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Abstract. An innovative few-shot anomaly detection approach is pre-
sented, leveraging the pre-trained CLIP model for medical data, and
adapting it for both image-level anomaly classification (AC) and pixel-
level anomaly segmentation (AS). A dual-branch design is proposed to
separately capture normal and abnormal features through learnable adapters
in the CLIP vision encoder. To improve semantic alignment, learnable
text prompts are employed to link visual features. Furthermore, SigL.IP
loss is applied to effectively handle the many-to-one relationship between
images and unpaired text prompts, showcasing its adaptation in the med-
ical field for the first time. Our approach is validated on multiple modal-
ities, demonstrating superior performance over existing methods for AC
and AS, in both same-dataset and cross-dataset evaluations. Unlike prior
work, it does not rely on synthetic data or memory banks, and an ab-
lation study confirms the contribution of each component. The code is
available at https://github.com/mahshid1998/MadCLIP.

Keywords: Medical Anomaly Detection - CLIP - Adapters - Learnable
prompts - Few-shot

1 Introduction

Medical anomaly detection (AD) involves identifying unusual patterns in medical
data, a task complicated by the lack of a universal anomaly definition, incon-
sistent patterns, and noisy data from variably calibrated sensory devices. These
challenges are magnified by the crucial role of AD in medical diagnosis, where
high sensitivity is essential. Therefore, AD models in medicine must achieve
exceptional performance for clinical reliability [8, 28, 34].

Overall, the AD task is approached from two main perspectives in the broader
literature: (a) unsupervised techniques (e.g., [6,26]) and (b) supervised meth-
ods (e.g., [13, 35,32, 31]). Unsupervised methods detect anomalies by leveraging
large datasets of normal samples, modeling the normal data distribution, and
identifying anomalies as deviations. For example, PatchCore [25] compares test
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samples to a memory bank of normal embeddings and measures the nearest
distance, while CFLOW-AD [9] models normal samples with a Gaussian distri-
bution using normalizing flows.

While many methods rely on large datasets, real-world applications often
include a few labeled anomalies, which provide valuable, application-specific in-
sights and enable recent models to significantly improve the detection of similar
anomalies [7]. In this context, supervised methods operate in a few-shot AD
setting, where both normal and anomalous samples are limited, e.g., 7,12, 27,
32|. However, the limited samples available during training, for both normal
and anomalous classes, often fail to capture their full variability, restricting the
model’s ability to generalize to unseen cases [7].

Recently, CLIP [23] based methods have made significant strides in few-shot
AD for medical images, e.g., [35,13]. It is clear that, relying solely on CLIP
[23] is insufficient, as its training focuses on aligning with the class semantics
of foreground objects, limiting its ability to generalize and capture subtle visual
abnormalities, and restricting its direct application in AD. Also, the substantial
distribution shift between the data on which CLIP [23] was trained and medi-
cal images results in suboptimal performance when CLIP is applied directly to
medical AD [13]. To effectively leverage CLIP for few-shot AD, it is crucial to
address the domain gap and fine-tune or adapt CLIP [23] specifically for the med-
ical AD task. For instance, MVFA [13] utilizes visual adapters in the form of fully
connected layers, while MediCLIP [35] uses convolutional layers. On the other
hand, several studies have shown that leveraging text modality as a represen-
tative of normal and abnormal classes can aid AD [16,5, 35, 13|. Since anomaly
descriptions might share similarities across different datasets, incorporating tex-
tual information reduces reliance only on visual data and, might enhance model
performance, particularly in data-scarce scenarios such as few-shot learning. For
instance, WinCLIP [16] uses a large set of artificial text prompts, while April-
GAN [5] maps visual features extracted from CLIP [23] onto the linear space of
text features in addition to using several memory banks. In medical AD, MVFA
[13] builds on the principles of April-GAN [5] by employing multi-level adapta-
tion of CLIP and utilizing fixed prompts. Unlike MVFA [13], WinCLIP [16], and
April-GAN [5] using fixed prompts, MediCLIP [35] adopts the learnable prompts
approach from [36]. Learnable prompts offer a key advantage over fixed prompts,
which require careful design and expert knowledge for medical scenarios [35]. Be-
sides visual feature adaptation and text prompts, another common approach is
using memory banks (e.g., [5,13]), though this strategy is relatively costly and
often fails to generalize well. Some, e.g., [35], generate extensive synthetic data
for the abnormal class to improve generalization.

Our approach, MadCLIP extends CLIP [23] with a two-branch architec-
ture using adapters to capture normal and abnormal visual features. We further
leverage the role of text in data-scarce scenarios, using it to represent both nor-
mal and abnormal distributions separately. MadCLIP is thus designed to learn
these distributions from both visual data and text, aiming to obtain a clear
distinction between normal and abnormal patterns. As a result, complementary
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Fig. 1. Overview of MadCLIP: A dual-branch design integrates adapters A,, and Agp
into CLIP’s vision encoder to separately capture normal and abnormal features. Learn-
able text prompts Vi,...,Vy and Wy, ..., Wi encode complementary semantics for
AD. The outputs are image-level AC ¢ and AS mask M.

branches exchange signals, and two sets of learnable prompts enable the model
to capture distinctive descriptions for both normal and abnormal patterns. In de-
tail, MadCLIP models normal and abnormal representations separately within
a dual optimization process, maximizing multimodal (i.e., text and vision) simi-
larity within each class while minimizing it between classes, thereby simplifying
decision-making by subtracting (i.e., contrasting) learned feature representations
to achieve better class separation. This enhances AD performance, particularly in
cross-dataset settings, while also our pipeline avoids the need for memory banks
or additional synthetic data. To perform image-text alignment, unlike the stan-
dard Softmax-based loss, we use SigLip [33], justified in the next section, where
we also show its performance benefits with an ablation study. MadCLIP was
evaluated on six datasets across five medical modalities using both a standard
and cross-dataset approach. It outperforms state-of-the-art (SOTA) methods in
anomaly classification (AC) and segmentation (AS).

The main contributions are: (1) A novel few-shot AD architecture with multi-
level adapters, each focusing on either normal or abnormal instances, enhanced
by a dual optimization objective utilizing learnable text embeddings for better
separation. This approach does not require extensive synthetic data or memory
banks, unlike SOTA methods. (2) This is the first application of SigLIP loss [33]
in medical AD, proving its effectiveness. (3) Strong generalization and improved
performance are demonstrated through extensive validation and cross-dataset
evaluation across diverse medical modalities and anatomical areas.
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2 Method

Few-shot medical AD is based on a dataset consisting of tuples {(z,c, M)},
where each € R'*"*3 represents a training image with spatial dimensions
h x w, ¢ € {0,1} denotes the image-level AC label (1 for anomalous, 0 for nor-
mal), and, when available, M € {0,1}"** provides the pixel-level AS map. The
training set is balanced, ensuring that |{z | ¢ = 0} = |{z | ¢ = 1}|. Given a
test image Ziest, the model predicts both AC and AS. Building on this setup,
we propose MadCLIP (see Fig. 1), a novel approach that leverages CLIP [23],
incorporating multi-level visual features adaptation and learnable text prompts
to enhance performance. MadCLIP is a dual-branch architecture that learns
separate multi-modal representations for normal and abnormal samples. Below,
we provide a detailed description of the components employed in MadCLIP.

Vision Adapters. MadCLIP employs adapters (denoted as A! and A’, for
normal and abnormal samples, respectively) within the CLIP vision encoder,
which is pre-trained on natural images [23], to effectively adapt it for medi-
cal imaging and the two target tasks: AC and AS. Using adapters follows the
findings of [13], which shows that it is preferable to traditional fine-tuning, as
it helps avoid overfitting due to high model complexity and limited data. Our
adapters are integrated while keeping the backbone frozen. In detail, for an in-
put image x, we extract the i-th layer feature from the CLIP vision encoder,
denoted as I'(z) € RY*?. Here, G represents the grid size, d is the feature
dimension, and i € {6,12,18,24}. Learnable adapters consist of two transfor-
mation stages. The first stage focuses on addressing the domain gap between
natural and medical images. Since CLIP embeddings are inherently optimized
for object-level tasks in natural images, they may not directly align with the
requirements of medical AD. To bridge this gap, we introduce a shared lin-
ear transformation layer (W}, .q) that refines the CLIP embeddings, map-
ping them into a feature space better suited for medical AD, formulated as
FYeq(IH(x)) = ReLUWY, . 4I*(x)). The second stage, given the need to per-
form both AC and AS, focuses on extracting features specialized for each task,
we apply two distinct linear transformation heads on top of the shared features:
the first head, dedicated to AC, captures high-level characteristics essential for
detecting anomalies, while the second head, tailored for AS, emphasizes fine-

grained spatial details, expressed as F{  (I*(z)) = ReLU (Wéet Fsihared(fi(m)))
and Fi,, (I'(@)) = ReLU (Wi, Fiyea(I'(®)) )

Learnable Prompts. Prior works have shown that well-designed text prompts
in CLIP can encapsulate rich semantic information, resulting in more reliable and
transferable representations for several tasks [20]. By using learnable prompts,
e.g., [36], we can eliminate the complexity of manually engineered prompts,
which we argue that it leads to better generalization of the resulting text em-
beddings to medical imaging tasks. Additionally, we posit that these prompts
can provide complementary signals between our dual branches, enhancing AD
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performance. Standard prompts such as “A photo of a [CLS]” primarily capture
the overall semantic content of images, which often fails to reflect the subtle,
domain-specific details found in medical imaging [37,13]. To address this limi-
tation, we develop a template for the normal (p,) and abnormal (p,;) classes
as: p, = [V1][V2]. .. [Var][CLS(normal)][Objective],  pap = [Wi][Wa]... W]
[CLS(abnormal)][Objective] where [V;] and [W;] denote learnable token em-
beddings, [CLS(normal)] and [CLS(abnormal)] are fixed class embeddings, and
[Objective] encodes the fixed semantic context of the target modality (e.g.,
Brain). To further enhance AD, we leverage an ensemble of text prompts by
incorporating multiple synonyms for normal (e.g. flawless, unblemished) and
abnormal (e.g. with a flaw, disease). Each synonym generates a distinct prompt,
leading to two prompt sets, P, = {Pny, Pray- - -+ Pny  A0d Pap = {Paby s Pabys - - - » Paby }»
where k represents the number of synonyms. By aggregating the diverse textual
prompts from these sets, we obtain two final prompts, ¢, and t4p.

Dual Branch Architecture. In few-shot AD, normal samples x,, are assumed
to be drawn from an unknown distribution D,, (i.e., z, ~ D,,), while anomalous
samples x4, originate from a distinct, typically unknown distribution D,;. These
two distributions are roughly complementary such that D,, = 1 — D,,, based
on the assumption that anomalies are defined as deviations from normal data.
Our dual-branch architecture processes these distributions via two specialized
branches.The so-called normality branch extracts features from normal samples
and aligns them with a learnable text prompt t,, capturing the behavior of D,,.
In parallel, the so-called abnormality branch processes abnormal samples and
aligns the extracted features with a complementary prompt t,;. Each branch is
trained to maximize the cosine similarity (cosSIM) between its visual features
and the corresponding prompt while minimizing similarity with the opposing
prompt (i.e., representative of the opposite class).

Formally, for a normal sample x,,, adapters A produce feature represen-
tations O, = A (I'(zy)). The dual optimization objective for normal samples
is to maximize cosSIM(OY,, t,,) — cosSIM(O? , t4p), which, assuming cosine simi-
larity approximates the dot product, simplifies to max [OL - tn — O - tap|. An
analogous formulation is used for abnormal samples: max [O;b “tab — O;b . tn].
These objectives aim to enforce a clear separation between the normal and
abnormal feature spaces. Furthermore, at each feature layer i, the normality
and abnormality scores are computed as S; = [OF - t, — O% - t,] and S, =
[Oéb “tap — Oflb . tn} and then concatenated into a single vector S* = [S}L, 2b].
During inference, as S is in patch-level, for AC we calculate the mean score
over all patches, and for AS as we need to match the input size, we use bilin-
ear interpolation to obtain image-level score vectors and aggregate them across
layers, i.e., M’ = SoftMax (Interpolate(S?)), & = Mean(SoftMax(S?)) where
M = ﬁ > M’ is the predicted anomaly map and é = ﬁzz ¢ is predicted
anomaly score. Here, |i| refers to the total number of feature levels at which
adapters are integrated into the visual encoder. This multi-layer adaptation aims
to effectively integrate complementary information from both branches for ro-
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bust AD.

Loss Function. The composite loss function we use at feature level 5 is L? =
A1 Dice(M?, M) 4 Ay Focal(M?, M) + s SigLip(é', ¢) where M? represents the
predicted anomaly map and & is the predicted anomaly score at the i’th feature
level, M is the ground truth mask, and ¢ denotes the image-level anomaly label.
The hyperparameters A1, A2, and Az are fixed to 1. Dice(.,.), Focal(.,.), and
SigLip(.,.) correspond to Dice [22], Focal [24], and a sigmoid-based loss for
text-image alignment [33]. The Dice and Focal losses are necessary for AS, and
particularly Focal loss is preferred as there is a significant class imbalance at the
pixel level, with anomalous pixels being greatly outnumbered by normal pixels.
Instead, for the AC task, given the balanced classes, the adaptation of SigLip [33]
is sufficient. The overall loss L is computed as the sum of losses across all feature
levels: L =Y, L'

We use SigLip loss [33] instead of the original CLIP loss[23] because our
architecture introduces two learnable text embeddings, each linked to multiple
images. Specifically, image similarity is computed across both normal and abnor-
mal prompts, while each prompt is compared against all images. This results in
a similarity matrix capturing multiple valid associations rather than a strict di-
agonal mapping. While CLIP loss can compute image similarity across all texts,
it cannot directly handle text similarity across multiple images, as each text
embedding corresponds to multiple images in a batch. In contrast, SigLip loss
processes image-text pairs independently, naturally supporting our many-to-one
setup. This distinguishes our approach from previous work in medical AD [31,
11, 35, 13|, with its contribution experimentally validated below.

3 Experimental Analysis and Results

We follow the latest SOTA: MVFA [13], using a medical AD benchmark that
spans five modalities and six datasets: brain MRI [1, 2, 21], liver CT [4, 19], reti-
nal OCT (composed of two datasets; OCT17 [17], and RESC [10]), chest X-
ray (Chest) [30], and digital histopathology (HIS) [3]. BrainMRI, LiverCT, and
RESC are used for both AC and AS, while OCT17, Chest, and HIS are relevant
only for AC. We use the area under the Receiver Operating Characteristic curve
(AUCQC), the standard medical AD metric, to report AUC for AC and AUC for AS.

Implementation Details. We use the CLIP model with the ViT-L/14 archi-
tecture and 240-pixel input images, as in [13]. The model has 24 layers and the
adapters were applied to the 6th, 12th, 18th, and 24th layers. Training is per-
formed with the Adam optimizer with the learning rate of 1e~3, batch size 16,
for 60 epochs. Augmentation follows the strategy outlined in [13].

Comparisons with SOTA. Table 1 presents the results of MadCLIP alongside
SOTA. Methods labeled as unsupervised (referred to as Unsup) rely on large aux-
iliary datasets containing only normal samples, while few-shot methods utilize a
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Table 1. Comparisons with SOTA in terms of AUC (%). Few-shot models use 16
samples per class. Best results are bold, second-best underlined.

Method Source HIS |Chest | OCT17|BrainMRI| LiverCT RESC Average
AC | AC AC [AC AS | AC AS | AC AS | AC AS
CFLOWAD [9] |WACV22 |54.54|71.44 | 85.43 |73.97 93.52]49.93 92.78 | 74.43 93.75|68.29 93.35

Unsu RD4AD [6] CVPR22 |66.59| 67.53 | 97.24 (89.38 96.54 | 60.02 95.86 | 87.53 96.17 | 78.04 96.19
P patchCore [25] CVPR22 |69.34| 75.17 | 98.56 [91.55 96.97 | 60.40 96.58 | 91.50 96.39 | 81.09 96.65
MKD [26] CVPR22 |77.74|81.99 | 96.62 [81.38 89.54|60.39 96.14 |88.97 86.60|81.18 90.76

DRA [7] CVPR22 |79.16 | 85.01 | 99.87 (82.99 80.45|80.89 93.00|94.88 84.01|87.13 85.82
BGAD |[32] CVPR23 88.05 95.29|78.79 99.25|91.29 97.07 97.20

Few |APRIL-GAN [5] |CVPRw23|81.16 | 78.62 | 99.93 |94.03 96.17 [ 82.94 99.64|95.96 98.47 |88.77 98.09
shot  |MediCLIP [35] MICCAI24|70.22 | 69.74 | 96.37 |91.56 98.08|79.31 98.95|86.51 94.07|82.28 97.03
MVFA [13] CVPR24 |82.62|85.72 | 99.66 (94.40 97.70|83.85 99.73|97.25 99.07 | 90.58 98.83
MadCLIP (Ours) 90.14|88.15| 99.71 |95.9 97.97|91.46 99.74|99.11 99.45|94.08 99.05

fixed set of 16 normal and abnormal samples. MadCLIP outperforms all SOTA
across multiple datasets, except for OCT17 [17], where April-GAN [5] achieves
better results. The slightly better performance of April-GAN [5] on OCT17 [17]
is likely due to the low inter-sample variability of the dataset, which is known
to benefit memory bank-based methods that operate by comparing test sam-
ples with stored representations from the training set. On average, MadCLIP
achieves best overall performance, surpassing the second-best method by 3.5%
in AC and 0.22% in AS. The performance gain of MadCLIP can reach up to
25.79% in AC and 13.23% in AS. Table 2 further compares few-shot methods for
different numbers of normal/abnormal samples. On average, independent of the
number of samples, MadCLIP performs the best, except for the OCT17 [17],
where all methods perform very similarly. Overall, as expected, the performance
of the methods increases as more samples are added to the training data. Still,
in the extreme case where only 2 normal samples and 2 abnormal samples are
available, Mad CLIP outperforms the others in 7 out of 9 cases.

Ablation studies. We conducted ablation studies on both the AC and AS
tasks, reporting average results over three different seeds and six datasets to
assess the overall effectiveness of MadCLIP. (a) The impact of prompt design
was evaluated by replacing our learnable prompt tokens (i.e., [V1][V2] ... [Vas] and
[W1][Wa] ... [Was]) with the hand-crafted templates used in [13, 16]. This substi-
tution led to performance drops of 1.28% for AC and 1.3% for AS, highlighting
the contribution of our learnable prompts. (b) Substituting the [Objective]
term with “medical image” resulted in drops of 1.71% in AC and 1.01% in AS,
further demonstrating the benefits of learnable prompts and context-specific
information. We further examined our dual-branch design by performing two
ablations. (c) removing one set of adapters (i.e., leaving 4 shared adapters for
both normal and anomaly classes, instead of the 8 in MadCLIP) resulted in
declines of 1.14% for AC and 1.06% for AS. (d) eliminating the signal from
the opposite class while calculating S? and Séb (i.e., excluding the subtraction
term from the calculation of the mentioned formulas), led to decreases of 1.41%
for AC and 1.24% for AS. (e) We replaced SigLip Loss with the CLIP-based
SoftMax loss, resulting in a performance drop of 1.48% for AC and 1.1% for AS.
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Table 2. Comparisons with few-shot SOTA for 2, 4, and 8 shots per class (AUC %).
Results for 16 shots are in Table 1. Best results are bold, second-best underlined.

Method Source HIS [Chest|OCT17| BrainMRI | LiverCT RESC Average

AC | AC AC AC AS | AC AS | AC AS | AC AS
DRA [7] CVPR22 |7291| 72.22 | 98.08 |71.78 72.09 |57.17 63.13|85.69 65.59| 76.3 66.93
BGAD [32] CVPR23 78.70 92.42 |72.27 98.71|83.58 92.10 94.41

APRIL-GAN [5] |[CVPRw23 |69.57| 69.84 | 99.21 |78.45 94.02 |57.80 95.87|89.44 96.39 | 77.38 95.42
MediCLIP [35] MICCAI24|64.49| 61.69 | 93.4 |85.13 _97.39|68.48 97.09|83.96 96.01 | 76.2 96.83

MVFA [13] CVPR24 |82.61|81.32 | 97.98 |92.72 96.55 |81.08 96.57|91.36 98.11|87.84 97.07
MadCLIP (Ours) 83.62|84.56| 99.06 |93.93 97.92 |84.48 99.39|95.09 97.18 |90.12 98.16
DRA [7] CVPR22 |68.73| 75.81 | 99.06 |80.62 74.77 |59.64 71.79|90.90 77.28|79.12 74.61
BGAD [32] CVPR23 - - - 83.56 92.68 | 72.48 98.88|86.22 93.84| - 95.13
4 APRIL-GAN [5] [CVPRw23|76.11| 77.43 | 99.41 |89.18 94.67 | 53.05 96.24|94.70 97.98 |81.64 96.29
MediCLIP [35] MICCAI24|70.85| 56.83 | 89.07 |83.82 96.86 |81.563 98.61|87.52 96.65 | 78.27 97.37
MVFA [13] CVPR24 |82.71| 81.95| 99.38 |92.44 97.30 |81.18 99.73|96.18 98.97|88.97 98.66
MadCLIP (Ours) 80.05 |88.10| 99.37 |95.25 97.90 |82.97 99.29|96.62 98.9 |90.39 98.69
DRA [7] CVPR22 |74.33|82.70 | 99.13 |85.94 75.32 |72.53 81.78|93.06 83.07|84.61 80.05
BGAD [32] CVPR23 - - - 88.01 94.32 | 74.60 99.00|89.96 96.06| -  96.46

APRIL-GAN [5] |[CVPRw23 |81.70| 73.69 | 99.75 |88.41 95.50 | 62.38 97.56|91.36 97.36 | 82.88 96.80
MediCLIP [35] MICCAI24| 69.8 | 72.08 | 95.69 |92.29 98.02|86.32 98.32|88.82 95.98 |84.17 97.44
MVFA [13] CVPR24 |85.10| 83.89 | 99.64 |92.61 97.21 |85.90 99.79|96.57 99.00|90.61 98.66
MadCLIP (Ours) 87.45/83.90| 99.14 |95.17 98.02 |89.31 99.81|97.16 98.85 |92.02 98.89

Table 3. Cross-dataset evaluation. AC is reported for all datasets. Best are bold.

Source Chest BrainMRI ~ OCT17 RESC AVG
Target NIHChest [29] CheXpert [14] ADNI [15] OCTDL [18]

MVFA [13] 61.91 80.41 53.94 88.47 87.94 74.53
MadCLIP (Ours) 62.44 81.99 57.35 90.74 88.09 76.12

(f) The use of a single common head instead of separate heads, Fpet and Fgeg,
for the AC and AS tasks, respectively resulted in performance drops of 1.43%
for AC and 3.41% for AS. To sum up, these ablation studies validate our de-
sign choices, demonstrating their positive contribution to both AC and AS tasks.

Cross-dataset analysis. MadCLIP is compared with the best counterpart:
MVFA [13] to assess generalization in a cross-dataset setting. Each model was
trained on 16 samples from the datasets described above and tested on unseen
target datasets of the same modality, as listed in Table 3. As seen, MadCLIP
consistently outperforms MVFA across all individual datasets, demonstrating
superior cross-dataset generalization. Notably, MadCLIP achieves an average
performance of 76.12% compared to 74.53% for MVFA.

4 Conclusion

We introduced a few-shot AD architecture that leverages CLIP with multi-level
adapters and prompt learning to model normal and abnormal classes separately.
Our dual-objective strategy, formulated through subtraction, incorporates a con-
trastive effect by encouraging similarity within the same class and dissimilarity
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between opposing class. By integrating SigL.IP loss, we further refine this sepa-
ration process, as it can handle many-to-one relationship of images and learn-
able unpaired texts. Extensive validation across diverse datasets demonstrates
superior performance and strong generalization over SOTA methods, underscor-
ing our approach’s robustness for medical AD. However, a current limitation
of MadCLIP is the assumption that learnable adapters and prompts are suffi-
cient to bridge the gap between medical images and textual descriptions, while
the modality gap remains unaddressed explicitly. Future work will explore the
method’s zero-shot potential and extend it to multi-modal AD, handling diverse
training modalities and unseen anatomical regions simultaneously.
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