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Abstract. Cataract surgery is the most common surgical procedure
globally, with a disproportionately higher burden in developing coun-
tries. While automated surgical video analysis has been explored in gen-
eral surgery, its application to ophthalmic procedures remains limited.
Existing research primarily focuses on Phaco cataract surgery, an expen-
sive technique not accessible in regions where cataract treatment is most
needed. In contrast, Manual Small-Incision Cataract Surgery (MSICS) is
the preferred low-cost alternative in high-volume settings and for com-
plex cases. However, no dataset exists for MSICS. To address this gap,
we introduce Sankara-MSICS, the first comprehensive dataset contain-
ing 53 surgical videos annotated for 18 surgical phases and 3,527 frames
with 13 surgical tools at the pixel level. We also present ToolSeg, a novel
framework that enhances tool segmentation with a phase-conditional de-
coder and a semi-supervised setup leveraging pseudo-labels from foun-
dation models. Our approach significantly improves segmentation per-
formance, achieving a 38.1% increase in mean Dice scores, with no-
table gains for smaller and less prevalent tools. The code is available at
https://github.com/Sri-Kanchi-Kamakoti-Medical-Trust/ToolSeg.
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1 Introduction

Cataract is the leading cause of preventable blindness worldwide, with surgery
being the standard treatment. Over 26 million individuals undergo cataract
surgery annually [4], making it one of the most common surgeries. Established
techniques include Phacoemulsification (Phaco) and Manual Small Incision Ca-
taract Surgery (MSICS). Unlike laparoscopic surgery, where most computer
vision methods have been developed [20], cataract surgery pose unique chal-
lenges. It involves delicate micro-instruments in a highly reflective ocular en-
vironment [14], resulting in specular distortions [3/5]. Additionally, the small
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instruments cause significant foreground imbalance (e.g., Figure [1] (left)), and
the transparent ocular tissues, combined with microscope use, create complex
optical conditions, thus complicating image analysis.

With increasing demand, expanding surgical capacity, safety, and efficiency
is crucial [6I25]. Automatic (real-time) surgical video analysis can advance sur-
geon skill development, improve training with targeted feedback, ensure quality
control, and detect anomalies [24]. This requires robust temporal and spatial
understanding, which rely on accurate phase detection and tool segmentation.

Prior work in computer vision-based surgical analysis has largely focused
on Phaco procedures [16]. Despite Phaco being the preferred technique, its re-
liance on expensive technology and infrastructure limits accessibility in low-and-
middle-income countries. Hence, in resource-limited and high-volume settings,
MSICS is favored. MSICS is also the preferred method for challenging cases,
such as brunescent hard, hypermature, and intumescent cataracts [I]. Despite
its prevalence and advantages, MSICS has been largely neglected in the devel-
opment of datasets for automated surgical video analysis. To date, no public
dataset exists specifically for MSICS instrument segmentation [I5/16].

In this paper, we introduce Sankara-MSICS, the first large-scale dataset on
MSICS. It includes 3,527 frames from 53 in vivo human cataract surgery videos,
annotated with pixel-level labels for 13 surgical tools and corresponding phases
across 18 surgical stages. Analysis of Sankara-MSICS reveals a strong corre-
lation between surgical phases and tool presence. Building on this insight, we
propose ToolSeq, a novel framework that leverages surgical phase information as
a prior for tool segmentation. Additionally, we leverage Meta’s SAM 2 model [19]
to generate pseudo-labels for unlabeled frames, expanding our dataset size from
3,527 to 24,405 frames without additional training. ToolSeg outperforms existing
methods by 38.1% DSC, with notable improvements in classifying and segment-
ing less prevalent tools. To validate its generalizability, we applied it to a Phaco
dataset, CaDIS [10], and observed significant improvements.

2 The Sankara-MSICS Dataset

The Sankara-MSICS dataset consists of 53 cataract surgery videos recorded at
Sankara Eye Hospital, Bangalore, India, from October 2023 to October 2024.
Each video, averaging 15 min 39 s + 7 min 38 s, was captured at 30 fps with a
1920 x 1080 resolution using a microscope-mounted video camera.

Two resident ophthalmologists at Sankara Eye Hospital defined 18 MSICS
surgical phases, and annotated all videos with start and stop timestamps for each
phase. Frames were uniformly extracted across phases, with additional frames
for underrepresented tools to address class imbalance. Resident ophthalmologists
then segmented and labeled the frames using a SAM [12]-based annotation tool
to minimize manual effort. The final dataset consists of 3,527 frames, annotated
for 13 surgical tools (at the pixel-level) and 18 surgical phases.

Table [1| compares Sankara-MSICS with existing cataract surgery datasets.
While Sankara-MSICS has fewer manually annotated frames than CaDIS [I0],
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Table 1: Comparison of Sankara-MSICS with other cataract surgery datasets.

Note: CaDIS [I0] statistics are as per instrument classes based on Task 2 and 3.
Dataset Surgery Size Annotations| Test

Type |Videos Frames|Tools Phases | Videos

Sankara-MSICS| MSICS | 53 3527 | 13 18  [(7-9/split)

CaDIS [10] Phaco | 25 4670 | 13 14 3
Cata7 [17] Phaco 7 2500 | 10 - 2
InSegCat [7] Phaco - 843 | 11 10 -

Cataract-1K [8]| Phaco 30 2256 | 9 13 (6/split)

it contains the highest number of surgical videos (53), more than twice that of
CaDIS (25). The larger number of surgeries increases variability and diversity,
which is important for robust model development. The number of test videos in
Sankara-MSICS is notably higher than the rest. We also release phase annota-
tions and unannotated frames to support multi-task learning.

3 ToolSeg: Our Proposed Method

3.1 Phase Tool Correlation

Analysis of Sankara-MSICS reveals a strong correlation between surgical phases
and tool presence (Figure . For instance, tool Vectis appears exclusively in
phase Nucleus Delivery, and Cautery in Conjunctival Cautery. In contrast, tools
such as Hoskins Forceps and Crescent Blade are used in multiple phases. Based
on these insights, we propose an approach that leverages surgical phase infor-
mation as a prior for tool segmentation.

3.2 Preliminary: Surgery Phase Recognition

To leverage surgical phase information for tool segmentation, we employ the
Multi-Stage Temporal Convolutional Network (MS-TCN++-) [I3] to predict the
phase of each frame. It processes the video at full temporal resolution, ensur-
ing smooth and consistent predictions through a multi-stage design. The initial
stage with dual dilated layers generates a preliminary phase prediction, which
is iteratively refined by subsequent stages with dilated residual layers. We train
the MS-TCN++ model on I3D features from our dataset, achieving an accuracy
of 61.5% in phase prediction.

3.3 Phase-Conditioned Segmentation Network

We propose ToolSeg, an encoder-decoder architecture for surgical tool segmen-
tation, in which the decoder is conditioned on the surgical phase to improve
segmentation accuracy (Figure . To achieve this, we introduce the Phase-
informed Conditional Decoder (PCD) layer at each decoder level. It consists
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Fig. 1: (Left) Despite visual similarity, Image A shows a Hydrodissection Can-
nula tool (Hydroprocedure phase), while B shows a Dialer (OVD, IOL Insertion
phase). ToolSeg leverages surgical phase information to accurately classify and
segment tools. (Right) Phase-tool co-occurrence matrix.

of three key components: Phase-aware Affine Feature Transform (PAFT), Dy-
namic Feature Blending Factor (DFBF), and Context-Aware Adaptive Gating
(CGate). PAFT modulates feature maps channel-wise, DFBF applies spatial
modulation, and CGate combines these modulations. We propose two variants
of phase-specific conditioning: PCD-Basic, where only PAFT is applied, and
PCD-Gated, where PAFT is combined with DFBF and CGate to further en-
hance feature modulation and segmentation accuracy.

To leverage phase-specific information for tool localization, the PAFT module
conditions the segmentation network on the predicted surgical phase by learning
phase-specific, channel-wise shift and scale embeddings. For each phase p, a
pair of learnable embeddings—y, (shift) and 3, (scale)—captures phase-related
priors, such as phase-tool correlation and tool co-occurrence. These embeddings
are applied to each input feature map f as: f' =, ® f + 3,. This enables the
network to adaptively adjust its feature maps channel-wise based on the current
phase, improving tool segmentation by emphasizing phase-relevant features.

To effectively integrate PAFT-modulated features with spatial features, we
introduce a blending factor a,, computed based on input feature map f and phase
p. It is formulated as: a = L%M’E, where H is a convolutional operation applied
to f and 7, is a learnable phase embedding.
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Fig.2: Overview of ToolSeg architecture (left) and key components of Phase-
informed Conditional Decoder layer: PAFT, DFBF, and CGate (right).
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Fig. 3: Qualitative results of ToolSeg compared with SOTA methods. (A) Hy-
drodissection Cannula, (B) , Rhexis Needle, (C)
Keratome, (D) , Blade, and (E) Vectis, Dialer.

Table 2: Impact of ToolSeg components on the Sankara-MSICS dataset.

Phase Phase Pseudo IoU DSC
Variant Conditioning Source Data (mzstd) (mtstd)
v0 - - X 40.90 + 3.4 50.66 + 3.9
vl 48.68 £ 4.9 58.29 £ 5.0

- - v
v2 PCD-Basic Predicted MSTCN-++ X 46.58 &£ 5.5 55.40 £ 5.8
v3 PCD-Gated Predicted MSTCN++ X 48.77 £ 5.5 57.52 &+ 5.4
v4 PCD-Gated Predicted MSTCN-++ v 54.32 + 4.4 62.70 + 4.3
vh PCD-Basic Ground Truth X 54.26 + 4.6 62.98 &+ 4.7
v6 PCD-Gated Ground Truth X 56.13 +£ 4.5 64.76 + 4.5
v7 PCD-Gated Ground Truth v 61.62 + 3.8 69.96 + 3.8

Building on «, we design CGate to fuse the phase-modulated features f’
with the original feature map f. The final output feature map is calculated as
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f" = f -a+ f-(1—a). A higher @ emphasizes phase-specific information,
whereas a lower a preserves the original spatial information.

3.4 Semi-Supervised Learning with SAM 2

Surgical tool segmentation models typically rely on sparsely annotated video
datasets, where only a small fraction of frames have ground truth masks. Since
precise, clinically relevant annotations require medical-trained professionals, the
process is labor-intensive, time-consuming, and costly, leaving most frames unuti-
lized. To address this, we propose a simple yet effective pseudo-label generation
method within a semi-supervised learning framework, leveraging SAM 2 foun-
dation model and targeted selection of unlabeled data.

To generate high-quality pseudo-labels, we use Meta’s SAM 2 [19], a state-
of-the-art interactive foundation model. SAM 2 supports prompt-based segmen-
tation using point inputs and can propagate masks from a seed frame across an
entire video, similar to object tracking. Leveraging these capabilities, we apply
an iterative prompting strategy followed by mask propagation to generate six
additional labelled frames for each existing frame. Thus, we generated 20,878
pseudo-labeled frames from our base dataset of 3,527 annotated frames.

We use a semi-supervised training strategy that combines annotated and
pseudo-labeled data. Pseudo labels provide weak supervision, allowing the model
to learn from a larger but low-quality dataset. This is followed by fine-tuning on
high-quality annotated data for strong supervision, ensuring the model retains
alignment with the expert-labeled data.

3.5 Experimental Setup

We use five-fold cross-validation, ensuring each fold has a distinct test set at the
video level, while the remaining data is split into training (80%) and validation
(20%) sets, with all frames downscaled to 480x270 resolution to optimize com-
putation. Segmentation performance is measured using Intersection over Union
(IoU) and Dice Similarity Coefficient (DSC).

Our model is based on a U-Net encoder-decoder architecture with four stages
and a bottleneck layer. We train it using the AdamW optimizer with an initial
learning rate of le — 4. The experiments run on an NVIDIA A100 GPU with a
batch size of 16 for up to 100 epochs, applying early stopping (patience: 10).

4 Results and Analysis

We assess the contributions of each component in our proposed solution by
constructing multiple model variants, with results summarized in Table 2] Our
baseline U-Net model without phase conditioning or pseudo data (v0) achieves
a mean loU of 40.90 and DSC of 50.66.

(i) Impact of Phase Conditioning. We train the ToolSeg model (v2, v3)
with predicted phases from the MS-TCN-++ model which yields improvements
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Table 3: DSC-based comparison of ToolSeg variants for tool segmentation in
Sankara-MSICS. Note: Background averages 94.51% pixel occupancy per frame.

Tools #Instances v0 v3 v4 v6 v7

Blade 387 464 634 634 69.0 74.8
Cautery 278 63.8 60.3 709 734 75.5
Conjunctival Scissors 156 619 68.1 756 76.0 82.3
Crescent Blade 390 674 674 73.7 76.1 80.0
Dialer 343 40.3 41.5 49.7 41.2 59.0
Hoskins Forceps 2005 78.3 78.7 822 80.6 84.3
Hydrodissection Cannula 339 36.5 36.7 49.6 57.6 56.18
Keratome 231 46.2 67.9 70.2 757 77.8
Rhexis Needle 86 14.0 30.3 27.6 38.7 47.2
Sideport 240 68.7 63.7 749 76.8 77.6
Simcoe Cannula 319 46.9 57.3 66.1 651 72.0
Vectis 152 41.7 44.7 56.2 554 61.8
Visco Cannula 396 46.4 40.1 55.2 56.3 61.0

Table 4: Comparison of ToolSeg with SOTA Table 5: Comparison of ToolSeg
methods on our Sankara-MSICS dataset. with SOTA methods on the

Method ToU (m + std) DSC (m + std) CaDIS dataset.

U-Net [21] 40.90 £+ 3.4 50.66 £ 3.9 Model IoU (m) DSC (m)
TernausNet [II]  42.76 £ 5.8 52.03 £ 6.0 U-Net [21] 52.69 62.84
ISINet [9] 27.55 + 3.1 37.60 &+ 3.7 TernausNet [II]  46.47 55.22
MATIS Frame [2] 11.41 + 6.8 18.24 £ 10.1 ISINet [9] 11.51 15.41
PAANet [22] 37.67 £ 3.2 46.93 = 3.7 MATISFrame [2] 25.59 34.43
RAUNet [17] 40.71 £ 44 4962 +52  ToolSeg vi 54.65  64.36
HRNetV?2 [23] 37.01 £ 65 4533 +£73  ToolSeg v6 60.73  68.63
ToolSeg v6 56.13 £ 4.5 64.76 = 4.5 ToolSeg v7 59.05 67.72

of 13.9-19.2% in IoU and 9.4-13.6% in DSC. To further establish an upper bound
performance we utilize ground truth phase labels, ToolSeg (v5, v6), which yields
IoU gains of 32.7-37.2% and DSC gains of 24.3-27.8% over the baseline (v0).
The results demonstrate that utilizing phase labels (whether predicted or ground
truth) can significantly boost segmentation performance, which is further refined
by the proposed gating mechanism. The performance gap between using ground
truth and predicted phase labels can be bridged by improving phase prediction
models, which is an open research direction and orthogonal to our contribution.

(ii) Effect of Pseudo-labeled Data. Adding pseudo-labeled data alone
(v1) improves IoU by 19.0% and DSC by 15.1%, showing the benefit of utiliz-
ing otherwise unlabeled video frames. Combining the PCD-Gated model with
pseudo-labeled data (v4 and v7) yields substantial gains, increasing IoU by
32.8%-50.7% and DSC by 23.8%-38.1%. This highlights the complementary ben-
efits of phase information and semi-supervised learning.

We evaluate the impact of our semi-supervised setup by training the model
with varying proportions of manually annotated data: 25%, 50%, and 100%. Us-
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ing only 50% of the labeled data along with pseudo-data, our model achieves
better performance (IoU: 57.1, DSC: 65.9) than a model trained with 100%
labeled data alone (IoU: 56.1, DSC: 64.8). These results demonstrate the effec-
tiveness of our semi-supervised approach in reducing annotation requirements
while improving performance.

We benchmark ToolSeg against several state-of-the-art models (Table [4),
including U-Net |2I], TernausNet [11], and ISINet [9], all of which have demon-
strated effectiveness in various surgical contexts. ToolSeg, with gated phase con-
ditioning and semi-supervised learning, achieves significantly higher performance
than all benchmarked models. Among the baselines, TernausNet achieves the
highest performance (IoU: 42.8, DSC: 52.0), followed by U-Net (IoU: 40.9, DSC:
52.0). ISINet and MATIS-Frame, which have shown strong performance in gas-
terointestinal surgery, achieve significantly lower IoU scores of 27.55 and 11.41,
respectively. This contrast highlights the unique challenges of ocular surgery,
where tools are smaller, often resemble each other, and blend into complex
anatomical backgrounds, making segmentation difficult. We do not compare our
method with video-based models such as [2I26] since these methods rely on a
sequence of frames whereas our method operates on single frames. Additionally,
[18] focuses on addressing class imbalance through loss function and sampling
optimizations, which is orthogonal to our objective. Therefore, we exclude it
from our comparisons.

Tools like the Blade, Keratome, and Rhexis Needle benefit significantly from
phase priors (ToolSeg v3/v6 vs v0), as their usage is strongly associated with
specific surgical phases (Figure . In contrast, tools like the Hoskins Forceps
and Dialer show smaller gains due to their presence across multiple phases.
Semi-supervised learning further boosts performance, particularly for underrep-
resented tools, with the Rhexis Needle and Dialer benefiting the most (ToolSeg
v6 vs v7). Meanwhile, tools with higher pixel occupancy, such as the Hoskins
Forceps, show smaller relative gains. These results suggest that phase priors en-
hance segmentation for phase-dependent tools, while semi-supervised learning
benefits tools with fewer instances or lower pixel presence.

To assess the generalizability of our method, we evaluate it on the CaDIS
dataset [10], which focuses on Phaco cataract surgeries and includes 13 tools
across 18 surgical phases. Using the best-performing ToolSeg variant (v6), our
model achieves a mean IoU of 60.7% and a DSC of 68.6%, significantly out-
performing SOTA models, like U-Net, TernausNet and MATIS-Frame by 9.2%,
24.3% and 99.3% in DSC, respectively (Table[f]). The semi-supervised setup (v1)
alone improves the baseline (v0) by 2.4% in DSC, and incorporating gated phase
conditioning with GT phases (v6) provides a substantial 15.3% IoU gain over the
baseline. These findings confirm that our approach generalizes well to other sur-
gical datasets, delivering notable performance gains. As ToolSeg focuses solely
on tool segmentation, we use only the surgical tool classes from CaDIS Task II,
merging anatomy and ‘other’ categories into the background. Thus, our results
are not directly comparable to prior work.
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5 Conclusion

We present Sankara-MSICS, the first comprehensive dataset on Manual Small-
Incision Cataract Surgery, addressing a critical gap in Al-driven surgical video
analysis in a widely performed but underexplored procedure. The dataset in-
cludes 3,527 frames from 53 videos with phase and tool annotations. Existing tool
segmentation models struggle with accurately classifying and segmenting MSICS
tools. To address this, we introduce ToolSeg, a novel segmentation framework
that significantly improves performance by leveraging surgical phase information
as a prior. Also, we use SAM 2-based label propagation to expand the dataset
to 24,405 frames, reducing manual annotation efforts. We hope this work estab-
lishes a solid foundation for future work in surgical tool segmentation, ultimately
advancing automated analysis for MSICS and similar procedures.
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