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Abstract. In clinical diagnosis and treatment, traditional enhanced imag-
ing techniques often suffer from inherent limitations such as high time
costs and radiation risks. Therefore, medical image translation technol-
ogy provides an efficient and cost-effective alternative. However, images
generated by existing medical image generation methods still face chal-
lenges, such as a lack of structural consistency and blurred local details.
Most methods struggle to simultaneously integrate deterministic struc-
tural information, such as anatomical priors, and probabilistic dynamic
variations, such as blood flow changes, to guide image generation. To
address these challenges, we propose a Coarse-to-Fine Medical Image
Translation (C2FMIT) model, which incorporates Deterministic Guid-
ance and Probabilistic Refinement to balance generation controllability
and fidelity. First, we design a Deterministic Guidance Branch (DGB) to
extract coarse-grained features, such as organ contours, to provide global
structural constraints. Then, these deterministic priors are fused into our
Probabilistic Refinement Branch (PRB), where the Brownian Bridge dif-
fusion is employed for fine-grained optimization, enhancing microvascu-
lar textures and dynamic enhancement regions. Notably, we designed a
Coarse-to-Fine Guided Attention Module (C2FGAM) to achieve progres-
sive optimization from global structure to local details. Experimental re-
sults demonstrate that our method achieves superior performance across
multiple modalities of functionally contrast-enhanced medical imaging
on both public and in-house datasets.

Keywords: Coarse-to-Fine Medical Image Translation · Deterministic
Guidance · Probabilistic Refinement.

1 Introduction

Traditional functional imaging techniques, such as those relying on dynamic con-
trast enhancement or high-radiation-dose imaging modalities, are fundamental
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to disease diagnosis [16]. However, their clinical application is limited by inher-
ent drawbacks, including high time costs and radiation exposure risks [4]. To
address these challenges, deep learning-based image-to-image translation tech-
niques have been proposed. These methods learn the mapping from a source
image domain to a target image domain, aiming to generate high-resolution
functional images from non-enhanced or low-dose images, providing an efficient
and low-risk alternative.
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Fig. 1. Overview of the proposed method. First, coarse-grained features are obtained
through the DGB. These features are then fused with the fine-grained features gener-
ated by the PRB via the C2FGAM module, resulting in refined probabilistic features.
Finally, these features undergo the Brownian Bridge diffusion process in the PRB to
generate the target image.

In recent years, generative models such as Generative Adversarial Networks
(GANs) [6,5] and Variational Autoencoders (VAEs) [14,3,10] have shown great
potential in medical image generation tasks. Conditional GAN-based medical
image translation methods, such as Pix2Pix [11] and CycleGAN [24], can syn-
thesize high-fidelity images, but their training instability and mode collapse is-
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sues (such as vascular ruptures and artifact generation) limit the reliability of
cross-domain medical image translation. VAEs generate images through latent
variable modeling, but they have limitations in medical image tasks. VAEs tend
to generate blurry images, lack explicit modeling of randomness during the gen-
eration process, and struggle to capture fine-grained details (such as microvas-
cular textures). With the rise of denoising diffusion models, many studies, such
as Denoising Diffusion Probabilistic Models (DDPMs) [7] and conditional diffu-
sion models [23], have surpassed GANs in natural image generation through a
stepwise denoising mechanism [2]. However, the multiple sampling steps during
inference increase computational costs, and the lack of effective guidance from
deterministic prior knowledge leads to structural biases in the generated images.

In summary, while existing medical image generation methods have improved
image quality, they still suffer from structural inconsistency and blurred local
details. Most methods struggle to simultaneously integrate deterministic struc-
tural information [21], such as anatomical priors, and probabilistic fine-grained
variations, such as dynamic blood flow, to guide image generation.

To address these challenges, we propose a C2FMIT by incorporating Deter-
ministic Guidance and Probabilistic Refinement to balance generation control-
lability and fidelity. Specifically, our contributions are summarized as: 1)Coarse-
Grained Deterministic Guidance: We design the DGB, which explicitly extracts
cross-domain coarse-grained features, such as organ contours and primary vascu-
lar topology, through adversarial feature disentanglement. 2)Fine-Grained Prob-
abilistic Refinement: We construct the PRB, which models stochastic generation
in the latent space through the Brownian Bridge diffusion process, enhancing
microvascular textures and dynamic enhancement regions at the voxel level.
3)Progressive Feature Fusion: We propose that the C2FGAM integrate global
structural information from the DGB with fine-grained details from the PRB.
The coarse-grained deterministic features are embedded into each denoising step
of the Brownian Bridge diffusion process, achieving a progressive optimization
from global anatomical constraints to local texture synthesis. 4))Extensive ex-
periments on the DCE-MRI (pre-contrast→post-contrast) and CT→CTA trans-
lation tasks demonstrate the superiority of our method. Evaluations on the
public Duke-Breast-Cancer-MRI dataset and an in-house ChestCT-CTA dataset
confirm state-of-the-art performance in both structural accuracy and functional
plausibility.

2 Method

Our proposed framework is illustrated in Fig. 1 and consists of three core mod-
ules: The DGB, which extracts coarse-grained features such as cross-domain
anatomical priors using a VAE-like structure; The PRB, which models and gener-
ates fine-grained features based on the Latent Brownian Bridge Diffusion Model
(LBBDM) [15]; The C2FGAM, which dynamically fuses deterministic features
with diffusion noise to achieve progressive optimization from global constraints
to local details.
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2.1 Deterministic Guidance Branch

The DGB aims to explicitly extract anatomical structural features (such as organ
contours and vascular topology) from cross-domain images. To address issues of
structural consistency and blurred local details, the outer layer of the DGB con-
sists of a pretrained VAE Encoder E(·) and a pretrained VAE decoder, ensuring
the features are extracted into latent space. These features then pass through a
UNet-like [17] structure, the translator tl(·), to ensure consistency with features
from the PRB and to extract cross-domain anatomical priors (such as vascular
topology and organ contours). Given the input x, the loss function of the DGB
is expressed as:

LDGB = ∥E(x)− tl(E(x))∥2. (1)

2.2 Probabilistic Refinement Branch

To ensure anatomical structural consistency while modeling fine-grained dy-
namic details in medical images, such as blood flow signals and microvascular
textures, we designed the PRB, which focuses on extracting fine-grained fea-
tures. This branch adopts the LBBDM, an extension of the classical Brownian
Bridge Diffusion Model (BBDM) into the latent space. Unlike existing Denoising
Diffusion Probabilistic Models, the Brownian Bridge process does not terminate
at pure Gaussian noise but instead converges to a clean conditional input y.
Following notation similar to DDPM, let (x, y) denote paired training data from
domain A and domain B. The diffusion process operates in the latent space of a
pre-trained VQGAN [22], accelerating both training and inference. For simplic-
ity, we retain x and y to represent their latent features (x := LA(x), y := LB(y)).
The forward Brownian Bridge diffusion process is defined as:

qBB(xt|x0, y) = N (xt; (1−mt)x0 +mty, δtI) (2)

where x0 = x, xt = y,mt = t/T and the variance term δt = 2(mt − m2
t ). The

reverse process of the PRB aims to predict xt−1 based on xt:

pθ(xt−1|xt, y) = N (xt−1;µθ(xt, t), δ̃tI) (3)

where δ̃t is the variance of Gaussian noise at step t and µθ(xt, t) is the predicted
mean value of the noise to be learned. The training objective of the PRB is
optimizing the Evidence Lower Bound (ELBO):

LPRB = E

[
cϵt

∥∥∥mt (y − x0) +
√
δtϵ− ϵθ(xt, t)

∥∥∥2] (4)

where cϵt denotes the coefficient term of the estimated noise ϵθ in mean value
term µ̃t. In summary, the objective of our jointly trained two branches is defined
as follows:

Ltotal = LDGB + LPRB (5)
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2.3 Coarse-to-Fine Guided Attention Module

In order to integrate deterministic structural information, such as anatomical pri-
ors in medical imaging, to guide image generation, we design the C2FGAM. This
module fuses global structural information from the DGB and detailed features
from the PRB at different scales, thereby enhancing the structural consistency
and detail fidelity of the generated images.

Given the features Fd from the DGB and Fp from the PRB, C2FGAM em-
ploys a two-stage feature fusion strategy. Firstly, at the channel level, a channel
attention mechanism [19] is used to enhance the importance of the probabilistic
features and to perform channel-wise weighted computation with the determin-
istic features:

Fc = Concat(σ(Wc ∗ Fp)⊙ Fp, LeakyReLU(BN(Wd ∗ Fd))) (6)

where Wc is the channel attention weight, σ(·) is the sigmoid activation func-
tion, BN(·) denotes Batch Normalization and ⊙ represents element-wise channel
weighting.A spatial attention mechanism [12] is then applied to enhance local
details further. The fused feature Fc is decomposed into two separate spatial
attention modules. After applying the attention mechanisms, the features are
concatenated to obtain Fs:

Fs = Concat(Fc1 ⊙ σ(Ws ∗ Fc1), Fc2 ⊙ σ(Ws ∗ Fc2)) (7)

Finally, the fused feature Fs is mapped using a 1×1 convolution to generate the
final optimized feature:

Frefined = LeakyReLU(Wf ∗ Fs) (8)

This feature contains global structural information while preserving rich local
details, providing robust feature support for generating high-quality medical
images.

3 Experiments

3.1 Datasets and Implementation

To validate our approach, we conducted experiments on a publicly available
DCE-MRI dataset (Duke-Breast-Cancer-MRI) and an in-house CT-CTA dataset
(ChestCT-CTA).

Duke-Breast-Cancer-MRI. This dataset, released by Duke University Med-
ical School in collaboration with the National Cancer Institute (NCI), contains
DCE-MRI sequences from 922 breast cancer patients. For each case, the follow-
ing MRI sequences are shared in DICOM format: non-fat-saturated T1-weighted
sequences, fat-saturated gradient echo T1-weighted pre-contrast sequences, and
most post-contrast sequences (3 to 4 sequences).

ChestCT-CTA. We selected the Chest Abdominal Aorta Angiography Im-
age dataset to evaluate our method. This dataset consists of paired CT-CTA
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images collected from a local hospital between May 2023 and March 2024. Each
CT and CTA scan image was resampled to a volume of 0.67×0.67×1.25 mm³,
consisting of 450-650 slices, each with a size of 512×512 pixels, totaling 1000
cases.

Implementation Settings. Our framework was implemented in PyTorch
2.0.0 with CUDA 12.1, and experiments were conducted on a computational
platform equipped with four NVIDIA RTX A6000 GPUs to accelerate train-
ing. For the Duke-Breast-Cancer-MRI dataset, we selected 358 patients with
contrast-enhanced MRI scans. Each patient’s MRI volume consists of 60 slices,
each with a size of 512×512. We chose pre-contrast and post-contrast phases as
the source and target images, respectively. For the ChestCT-CTA dataset, 114
patients with paired CT/CTA scans were included, where each CT/CTA volume
comprises 560 slices (512×512 pixels). Both datasets were split into train, vali-
dation, and test sets at a 7:1:2 case-level ratio. During preprocessing, all images
were resized to 256×256 to meet the model’s input requirements. In the training
phase, we first pretrain the VQGAN using the collected dataset, with a down-
sampling factor set to 8. For the BBDM, we set the number of time steps to 1000
and used 200 sampling steps during the sampling phase to balance generation
quality and efficiency.

3.2 Comparison with SOTA Methods

Quantitative Analysis. Our method was compared with six state-of-the-art
synthesis methods, including Pix2Pix, CycleGAN, VQI2I [1], QS-Attn [9], BBDM
and UNSB [13]. For a fair comparison, we retrained their networks using publicly
available implementations to generate their best synthesis results. Quantitative
comparisons were performed on the Duke-Breast-Cancer-MRI [18] and ChestCT-
CTA datasets using Mean Absolute Error (MAE), Peak Signal-to-Noise Ratio
(PSNR) [8] and Structural Similarity Index (SSIM) [20]. The results are sum-
marized in Table 1 and Table 2, where the best and the second best results are
highlighted.

Table 1. Quantitative comparison with the prediction baseline on the Duke-Breast-
Cancer-MRI dataset (Mean ± Std).

Duke-Breast-Cancer-MRI
Methods MAE(Voxel)↓ PSNR(dB)↑ SSIM(%) ↑
Pix2Pix 6.73±1.35 23.86±1.53 70.88±4.47

CycleGAN 6.91±1.20 24.42±1.46 65.39±4.84
VQI2I 7.32±1.39 24.50±1.27 68.51±4.93

QS-Attn 9.29±1.43 24.11±1.65 42.69±4.65
BBDM 5.73±1.11 25.65±1.41 75.55±4.65
UNSB 7.68±2.12 23.54±2.16 71.98±6.05
Ours 3.92±1.08 27.34±1.22 80.34±4.33
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Table 2. Quantitative comparison with the prediction baseline on the ChestCT-CTA
dataset (Mean ± Std).

ChestCT-CTA
Methods MAE(Voxel)↓ PSNR(dB)↑ SSIM(%)↑
Pix2Pix 9.74±2.13 21.22±1.99 76.60±4.71

CycleGAN 8.57±2.11 22.56±2.29 81.34±4.82
VQI2I 18.95±2.29 16.06±0.85 58.63±3.71

QS-Attn 10.66±3.33 20.99±2.36 80.14±5.30
BBDM 12.70±1.95 19.31±1.10 72.80±4.61
UNSB 10.00±3.90 21.33±3.26 78.78±6.71
Ours 6.99±2.07 24.30±1.29 84.41±4.83

Table 1 and Table 2 present the average MAE, PSNR, and SSIM scores
for all methods on the Duke-Breast-Cancer-MRI and ChestCT-CTA datasets.
When comparing the latest generative models with our method, our approach
demonstrates superior quantitative performance. For the former, our average
MAE is 3.92, the average PSNR is 27.34, and the average SSIM is 80.34%. For
the latter, the average MAE is 6.99, the average PSNR is 24.30, and the average
SSIM is 84.41%. These results indicate that our model generates the highest-
quality images, closely matching the ground-truth distribution and achieving
better human-perceived visual fidelity than other methods.

Source Pix2Pix CycleGAN VQI2I QS-Attn BBDM UNSB Ours Target

DUKE-
MRI

ChestCT-
CTA

Fig. 2. Visual comparisons of proposed methods and other state-of-the-art methods.

Qualitative Analysis. Fig. 2 shows a qualitative comparison between our
method and previous state-of-the-art techniques. Compared to these models,
the images generated by our method exhibit the highest overall quality. Our
approach effectively preserves fine-grained details while ensuring the structural
consistency of the generated images. Specifically, our model excels in maintain-
ing important anatomical features, such as organ contours and vascular topology,
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while also capturing subtle dynamic details like microvascular textures and blood
flow signals. In contrast to other models, our method avoids blurring critical
details, especially in complex structures. This is achieved by combining deter-
ministic guidance from anatomical priors with the probabilistic refinement that
simulates the stochastic variations in medical images. As a result, our model
ensures the preservation of both global structure and local details, leading to
more accurate and clinically relevant image synthesis.

3.3 Ablation Study

We conducted an ablation study to investigate the effectiveness of the DGB,
PRB, and C2FGAM. We performed ablation analysis on variants of our proposed
method using these two datasets. The results are shown in Table 3, where "w/o"
denotes our method without a certain module:

Table 3. Ablation study of designed components in our methods.

Duke-Breast-Cancer-MRI ChestCT-CTA
Methods MAE↓ PSNR↑ SSIM↑ MAE↓ PSNR↑ SSIM↑
Ours 3.92 27.34 80.34 6.99 24.30 84.41
w/o DGB 5.73 25.65 75.55 12.70 19.31 72.80
w/o C2FGAM 6.30 25.48 75.71 14.80 18.59 70.02
w/o PRB 6.33 24.36 73.11 15.25 17.95 68.87

We found that omitting the DGB, PRB, or C2FGAM leads to a decline in
generation quality, further emphasizing the importance of combining anatomical
priors and other deterministic structural information with probabilistic dynamic
details such as blood flow to guide the image generation.

4 Conclusion

In this work, we propose a coarse-to-fine medical image translation framework
that harmonizes deterministic guidance and probabilistic refinement to balance
controllability and fidelity in generation. Specifically, the framework extracts
anatomical priors (coarse-grained features) via the DGB, integrates them with
fine-grained probabilistic optimization through the PRB, and guides the synthe-
sis via the C2FGAM. Ablation studies validate the necessity of each component,
demonstrating that removing any module degrades synthesis quality. Experi-
ments on Duke-Breast-Cancer-MRI and ChestCT-CTA datasets show that our
method achieves state-of-the-art performance, offering a robust solution for clini-
cal scenarios requiring both structural precision and dynamic detail preservation.
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