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Abstract. Compared to single view medical image classification, using
multiple views can significantly enhance predictive accuracy as it can
account for the complementarity of each view while leveraging correla-
tions between views. Existing multi-view approaches typically employ
separate convolutional or transformer branches combined with simplistic
feature fusion strategies. However, these approaches inadvertently dis-
regard essential cross-view correlations, leading to suboptimal classifica-
tion performance, and suffer from challenges with limited receptive field
(CNNs) or quadratic computational complexity (transformers). Inspired
by state space sequence models, we propose XFMamba, a pure Mamba-
based cross-fusion architecture to address the challenge of multi-view
medical image classification. XFMamba introduces a novel two-stage fu-
sion strategy, facilitating the learning of single-view features and their
cross-view disparity. This mechanism captures spatially long-range de-
pendencies in each view while enhancing seamless information transfer
between views. Results on three public datasets, MURA, CheXpert and
DDSM, illustrate the effectiveness of our approach across diverse multi-
view medical image classification tasks, showing that it outperforms
existing convolution-based and transformer-based multi-view methods.

Code is available at https://github.com/XZheng0427/XFMamba.

Keywords: Multi-view - Cross fusion - Medical image classification -
State space models.

1 Introduction

In many clinical applications, such as the detection of orthopedic fractures, radi-
ologists analyze multiple views within a diagnostic examination. Typically each
view provides complementary insights, but their correlation can also be lever-
aged to improve predictive accuracy. Numerous recent studies aim to develop
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multi-view networks inspired by the multi-view analysis performed by radiolo-
gists, leading to the creation of more robust and performant models [1,2].

Previous approaches in multi-view image analysis rely on Convolutional Neu-
ral Networks (CNN) or Transformers. While CNN-based approaches are recog-
nized for their scalability and linear computational complexity in the number of
image pixels, their reliance on local receptive fields introduces a bias toward local
feature extraction, limiting their ability to directly capture long-range depen-
dencies [3,4]. Moreover, CNNs often employ a weight-sharing mechanism across
different view features of the input image, limiting their flexibility in adapting
to unseen or low-quality medical images. To address the limited context under-
standing of CNNs, methods such as CVT [5] and MV-HFMD |[25] utilize CNNs as
the backbone for local feature extraction while incorporating cross-view attention
mechanisms to transfer features between unregistered views. With the emergence
of Transformers, transformer-based methods such as T-MVF [7] enhance visual
modeling capabilities by leveraging global view features and dynamically adapt-
able weights. However, the attention mechanism in transformer-based methods
results in quadratic computational complexity relative to input size and limita-
tions on token size, posing substantial challenges to efficiency [8]. Building on
the architecture of vision transformers, multi-view Swin Transformer approaches
such as MV-Swin-T [6] and WT-MVSNet [9] aim to improve efficiency by reduc-
ing the dimensions or strides of processing windows. However, this optimization
comes at the cost of limiting cross-view feature interactions.

To address the aforementioned limitations, Selective Structured State Space
Models, also referred to as Mamba [8], have garnered increasing attention for
their ability to selectively forget or propagate information, achieve global fea-
ture coverage, and utilize dynamic weights with linear computational complex-
ity. Mamba has demonstrated exceptional performance in natural language pro-
cessing [8] and computer vision tasks [11,17]. Furthermore, extensive research
has investigated its potential in medical imaging, including image segmenta-
tion [10] and image classification [12]. Multi-view BI-Mamba [26] employs an
early fusion mechanism to capture and integrate multi-view information. How-
ever, these recent studies incorporate Mamba as a plug-and-play module without
a task-specific, in-depth design for multi-view medical imaging. Additionally, the
exploration of Mamba in multi-view medical imaging tasks for cross-image fusion
remains limited, particularly in architectural adaptations and fusion strategies.

Inspired by these advantages, we propose XFMamba, a pure Mamba net-
work for multi-view cross-fusion, tailored to address the challenges of multi-view
unregistered medical image classification. XFMamba integrates a four-stage en-
coder and two-stage fusion modules. The encoder effectively captures multi-scale
features across multiple views. Furthermore, the two-stage fusion module is de-
signed to exchange and align cross-view information and enhance multi-view in-
tegration. Comprehensive experiments conducted on the MURA musculoskeletal
radiographs dataset [13], the CheXpert chest X-ray dataset [14], and the CBIS-
DDSM mammography dataset [15] demonstrate that XFMamba outperforms
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state-of-the-art models across three varied clinical problems. The key contribu-
tions of this work can be summarized as follows:

1. Our cross-fusion work marks the successful application of state space models,
specifically Mamba, in multi-view medical image classification.

2. We propose a two-stage, Mamba-based fusion mechanism designed to effi-
ciently extract and seamlessly integrate information across multiple views.

3. Comprehensive evaluations across three varied datasets demonstrate the su-
perior accuracy and efficiency of our method, establishing a new benchmark
for Mamba’s potential in the multi-view medical imaging domain.

2 Methods

2.1 Preliminaries

State Space Models State Space Models (SSMs) [16] constitute a category of
sequence-to-sequence modeling frameworks distinguished by their time-invariant
dynamics, formally known as linear time-invariant (LTI) systems. SSMs, with
their linear computational complexity, efficiently capture underlying dynamics
by implicitly mapping to latent states, formally expressed as:

B (t) = Ah(t) + Bx(t),y(t) = Ch(t) + Dx(t). (1)

Where, z(t) € R denotes the input, h(t) € RY denotes the hidden state, and
y(t) € R denotes the output. b/ (t) refers to the time derivative of h(t). Addition-
ally, A € RV*N refers to the state matrix. B € RV*!, C € RN and D € R
denote the projection matrices.

Mamba [8] employs the zero-order hold (ZOH) discretization method to con-
vert ordinary differential equations (ODEs) into discrete functions, making it
particularly well-suited for deep learning applications. The discretization pro-
cess applies a time step A to transform the continuous state parameters A and
B into discrete parameters A and B, which can be defined as:

A =exp(AA),B = (AA) texp(AA — 1) - AB. (2)
Then, Eq. (1) takes the following form:
hi = Ahy_1 + Bay, y: = Chy + Day (3)

Eq. (3) represents the fundamental operation within the SSM module.

2.2 Proposed Architecture

As shown in Fig. 1, the proposed approach consists of a four-stage multi-scale en-
coder and a two-stage cascade fusion module. For each input image, the encoder
is comprised of four visual state space modules (VSSMs), incorporating down-
sampling operations and sequentially cascaded to extract hierarchical image fea-
tures across multiple levels. Next, features extracted from the two branches are
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processed and integrated through a two-stage cascade fusion module, which con-
sists of a Cross-View Swapping Mamba (CVSM) block for local feature cross-view
correlation (shallow fusion) and a Multi-View Combination Mamba (MVCM)
block for holistic feature multi-view correlation (deep fusion). Finally, the re-
fined and merged features are fed into a classifier to produce the prediction.
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Fig.1. XFMamba architecture. (i) The overall architecture is composed of a four-
stage encoder and two-stage fusion module. (ii) Visual State Space Module (VSSM)
for feature extraction. (iii) Cross-view swapping Mamba (CVSM) block for shallow
fusion. (iv) Multi-view combination Mamba (MVCM) block for deep fusion.

XFMamba Encoder. The multi-scale encoder consists of two four-stage fea-
ture extraction branches that process two greyscale images with different views as
input, defined as X1, X,o € RE*WX1 The multi-scale encoder adopts VMamba
as the backbone [17]. Inspired by ViT [18], it starts by partitioning the input into
patches to produce feature maps, i.e., X%LDQ € RTXTx0n, Next, the features
are progressively processed through three stages of downsampling and VSSM,
as shown in Fig. 1(i) and (ii), resulting in multi-scale feature representations,
ie, X3 € R X ¥ xC2, X3 0 € R16%76 %5 and X100 € Rz %32 X% We
implement the VSSM using Selective Scan 2D (SS2D) modules proposed by
VMamba [17]. As illustrated in Fig. 1(ii), the features are processed through
a sequence comprising linear projection (Linear), depth-wise convolution (DW-
Conv), and the Sigmoid Linear Unit (SiLU) activation function. Subsequently,
an SS2D module with a multiplicative connection is utilized to capture spatially
long-range (wider context) information.
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Shallow Fusion: Cross-View Swapping Mamba. As illustrated in Fig. 1(iii),
we introduce a CVSM block that leverages an interleaving mechanism to enhance
cross-view features by incorporating information from the other view. The two
input features are initially processed through linear layers and depth-wise con-
volutions, followed by SiLU activation, and are then passed into the cross-view
interleaving SS2D. Specifically, the cross-view interleaving SS2D mechanism is
firstly applied on X2 and X2, facilitating efficient feature interleaving across
multiple views without incurring additional computational overhead, as shown
in Eq. 4.

M(C) = {1,%fC’mod 2=0, Tl ) = {)5,32/“[;,0},# M(C) =1, n
0,if C mod 2 =1. X102l Csif M(C) = 0.

v

Here, Xv51/v2v X;ll/v2 € REXNXC(N = H x W) represent the flattened features.
M(C) defines the channel-wise mask, comprising binary values where 0 signi-
fies no interleaving and 1 denotes interleaving. Subsequently, the interleaved
cross-view features are processed through their corresponding Mamba blocks to
extract long-range cross-view spatial information. The resulting sequences are
then reshaped and merged to generate the output scanned features using the
de-interleaving merge mechanism. This results in the features X2, and X7, from
both views. We adopt a shared channel-attention mechanism, i.e., Squeeze-and-
Excitation (SE) [20], to reweight their channels in a cross-view manner and
adaptively learn the inter-model relationships. Crucially, cross-multiplication is
employed to process two channels instead of merely scaling each feature map by
its own weights. Specifically, the attention derived from the global context of vy
is used to scale the channels of vy’s feature map, and vice versa.

Deep Fusion: Multi-View Combination Mamba. In the previous CVSM
block, features from two views interleave to enhance each other, capturing lo-
calized cross-view interactions. However, to generate a more holistic represen-
tation that integrates critical information from both views at a deeper level,
we introduce the MVCM block. Unlike CVSM, which focuses on localized fea-
ture interleaving, MVCM performs a more comprehensive fusion by aggregating
and refining the outputs of the CVSM block. This transition from shallow fu-
sion (local feature mixing) to deep fusion (global integration) ensures that the
final representation effectively captures higher-level fused features from both
views, as illustrated in Fig. 1(iv). Specifically, the outputs X2, and X35, from the
CVSM block are first fused as one of the inputs. Additionally, two separate view
branches are introduced, each processing features from different views as input.
Subsequently, the three branches are processed through linear layers, depth-wise
convolution layers, and SiLU activation before being fed into the multi-view
combination SSM. Within the multi-view combination SSM, the system ma-
trix Cjyse information is exchanged across multiple selective scan modules to
enhance multi-view feature fusion, inspired by [22,23]. The Mamba selection
mechanism generates the system matrices B, C and A from linear projection
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layers, facilitating the context-awareness capability of the model. As specified in
Eq 3, the matrix C decodes information from the hidden state h; to produce
the output y;. Therefore, we employ the matrix Cy,s. of fused-branch to decode
two separate view branches enhancing the model’s multi-view context-awareness
ability. The modified Eq. 3 is applicable to the multi-view combination SSM and
is defined as follows:

yf)l = Cfusehfﬂ + Dvlzlev Yol = [yzlzlvy?;lv ""yZJLIL
Yoo = Cfusehf;z +Duatl, Yoz = [Ynos Yo s Yol (5)
2
y;use - Cfusehgfuse + Dfuse‘r)}usm Yfuse = [yjl‘useﬂ yfuse7 R 7y?use]'

Where, le/w/fuse defines as the input at time step ¢, while y,1/42/fuse T€D-
resents the output of the multi-view combination SSM. After the multi-view
combination SSM process, we propose a fuse-multiplication mechanism to com-
pute channel attention on the normalized original fused view-specific features,
adaptively learning the fused-view channel relationships to enhance the feature
representation of a single view. Finally, additive fusion is applied to combine the
three feature branches, resulting in a final holistic fused feature.

3 Experiments

3.1 Datasets and Evaluation Metrics

Datasets. To evaluate the effectiveness of our approach, we conducted experi-
ments on the MURA [13], CheXpert [14], and CBIS-DDSM [15] datasets. The
MURA dataset is the musculoskeletal abnormality detection dataset, which is
a binary classification task and contains two view X-ray images for each pa-
tient. We have selected patients with two views and divided the patients into
random subsets for training (35,185), validation (3,158) and testing (3,283). The
CheXpert dataset comprises chest X-ray images annotated for 13 distinct ob-
servations with positive and negative labels. We selected patients that included
both frontal and lateral views and randomly divided the samples into subsets
for training (23,559), validation (3,926) and testing (3,928). The CBIS-DDSM
is a mammography dataset with craniocaudal (CC) and mediolateral-oblique
(MLO) views, which is a binary classification to predict benign versus malignant
cases for each CC/MLO pair. The training, validation, and test splits comprise
857, 215, and 274 CC/MLO pair samples, respectively. We applied the cropped
method for CBIS-DDSM, outlined by [24], adopting thresholding to position a
fixed-size cropping window that captures the breast while minimizing the inclu-
sion of an empty background. For all three datasets, we resized the images to
224 %224 prior to inputting them into the models.

3.2 Experimental Details

Our XFMamba approach was implemented using PyTorch and trained on an
NVIDIA A100 GPU. We adopted the Adam optimizer with the initial learning
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rate le* and weight decay le™® to update the model parameters. The model
was trained for 100 epochs with a batch size of 16. We initialized our XFMamba
model with the pre-trained weights provided by VMamba [17] for the XFMamba
feature encoder, constructing three variants of the model with different sizes: tiny
(XFMamba-T), small (XFMamba-S), and base (XFMamba-B).

3.3 Comparison with State-of-the-Art Methods

To evaluate the performance, we compared the AUROC values of our XFMamba
method with CVT [5], MVC-NET |[2], MV-Swin-T [6], MV-HFMD [25], and BI-
Mamba [26]. We follow the experimental protocol [5], which is optimized for the
cross-entropy loss and repeated over four training runs. The quantitative results
are presented in Table 1, showcasing the classification performance along with a
comparison of model sizes across the three datasets. Our tiny model outperforms
other methods on the MURA and CheXpert datasets while maintaining the
second-fewest number of parameters. Additionally, our small and base methods
achieve the highest AUROC values across all three datasets. This superiority
arises from the capability of our proposed XFMamba model to efficiently extract
features from each individual view and while leveraging cross-view features.

Table 1. AUROC and model size (millions of parameters) comparisons on MURA (2
classes), CheXpert (13 classes), and CBIS-DDSM (2 classes) datasets. The mean and
standard deviation of AUROC over four training runs.

Method  Backbone |Params(M) MURA CheXpert  CBIS-DDSM
CvT Resnet18 39.95 0.876 £ 0.003 0.909 £ 0.002 0.697 = 0.002
BI-Mamba  ViM-s 37.39 0.878 £0.004 0.905+£0.002 0.611 4 0.003
MV-HFMD  ViT-s 54.07 0.886 +0.002 0.909 £ 0.003 0.569 £ 0.002
MVC-NET ResNet26 71.10 0.838 £0.003 0.892+£0.002 0.702 £+ 0.003
MV-Swin-T  Swin-T 58.32 0.711 £0.002 0.882 £ 0.005 0.566 4= 0.002
XFMamba VMamba-t 39.29 0.898 £0.002 0.917 £ 0.003 0.664 = 0.002
XFMamba VMamba-s 58.73 0.910 £ 0.003 0.918 £0.002 0.752 £ 0.004
XFMamba VMamba-b|  90.54 0.904 £ 0.004 0.919 + 0.002 0.761 £+ 0.003

Furthermore, Fig. 2(Left) compares the model computational complexity on
the CBIS-DDSM dataset. The results indicate that our tiny model has the lowest
FLOPs among the compared approaches while still achieving competitive perfor-
mance. Fig. 2(right) presents the qualitative results for GradCAM [27] heatmap
examples in the CBIS-DDSM dataset against other methods. The white mask of
the full mammogram image is the ROI of abnormalities. XFMamba’s heatmaps
are more precise and tend to focus on the ROI mask, whereas other models’
heatmaps may highlight irrelevant areas. However, in failed cases, all models
struggled to distinguish between abnormal and normal regions due to the lim-
ited visibility of the pathological structure.
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Fig. 2. (Left) Computational complexity comparison on CBIS-DDSM dataset. The
size of each circle denotes the model size, i.e., parameters. (Right) Qualitative results
for successful cases and failed cases (right of the orange dotted line) using different
methods on the CBIS-DDSM dataset.

3.4 Ablation Study

As illustrated in Table 2, we performed an ablation study with XFMamba-S
on the CheXpert dataset. Compared to the complete model, eliminating the

Table 2. XFMamba ablation study on CheXpert.

Num Views Fusion Type CVSM-Block MVCM-Block AUROCH
1 Lateral no X X 0.8961
2 Frontal no X X 0.9081
3 Frontal & Lateral early-fusion X X 0.9090
4 Frontal & Lateral late-fusion X X 0.9092
5 Frontal & Lateral cross-fusion v X (concat)  0.9129
6 Frontal & Lateral cross-fusion v X (add) 0.9136
7 Frontal & Lateral cross-fusion X v 0.9144
8 Frontal & Lateral cross-fusion v e 0.9184

CSVM-Block results in a 0.40% performance reduction. To evaluate the impact
of removing the MVCM-Block, we test two simple fusion methods (addition and
concatenation) reducing performance by 0.48% and 0.55%, respectively. Elimi-
nating both blocks and employing late fusion for feature integration results in a
0.92% performance decline. Additionally, we compare our proposed cross-fusion
model with both early-fusion and late-fusion models utilizing concatenation,
finding that XFMamba outperforms them by 0.94% and 0.92%, respectively. To
further assess the effectiveness of multiple views, we compare the lateral view,
frontal view, and their combination, observing that incorporating multiple views
improves performance by 1.03% and 2.17% compared to using only the lateral
or frontal view, respectively.
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4 Conclusion and Future Work

In this paper, we have proposed a novel XFMamba network for multi-view medi-
cal image classification. Our model combines a four-stage encoder and two-stage
fusion module, enabling the effective learning of single-view features and their
cross-view combination. Qur cross-view swapping Mamba block enriches feature
across views through cross-view information integration. The multi-view com-
bination Mamba block further enhances multi-view information fusion through
a multi-view selective scan mechanism. Comparison experiments and ablation
studies demonstrate the effectiveness of our approach. In future work, our XF-
Mamba network can serve as a baseline for multi-modality models that combine
different imaging modalities. We also plan to explore clinical applications where
multiple views are registered, or exhibit geometric relationships, leveraging our
approach to enhance feature alignment and information fusion.
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