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Abstract. Retinal vessel segmentation from fundus images is an impor-
tant task in intelligent ophthalmology. Because vessel annotation is par-
ticularly challenging, the scarcity of training labels hinders the model ro-
bustness for real-world scenarios. Recent research has shown that SAM, a
foundation model for natural image segmentation, demonstrates impres-
sive performance on medical images after few-shot fine-tuning. Therefore,
fine-tuned SAM holds promise as a pseudo label generator to alleviate
the label scarcity problem in vessel segmentation. However, the limited
labeled data fails to represent real-world distribution, fine-tuned SAM
might produce erroneous predictions in unseen image patterns, which is
known as open-set label noise. In this work, we propose SAM-OSLN to
reduce open-set label noises and improve the quality of generated pseudo
masks. Firstly, we introduce the prototype technique to perform open-
set aware SAM fine-tuning and identify open-set label noises accord-
ingly. Subsequently, we design an explicit label denoising method and
an implicit training strategy to jointly mitigate the impact of open-set
label noises. Extensive experiments demonstrate that SAM-OSLN out-
performs previous state-of-the-art methods on multiple fundus datasets
under synthetic and real-world scenarios.

Keywords: Robust retinal vessel segmentation · Segment anything model
· Open-set label noise · Label-efficient · Domain generalization.

1 Introduction

Retinal vessel segmentation (RVS) from fundus images is one of the important
medical image analysis applications, as morphological changes of vessels serve
as indicative markers for the detection of various ophthalmic disorders, such
as diabetic retinopathy (DR) [12], and hypertensive retinopathy [1]. Although
deep neural networks (DNNs) have considerably promoted the field of medical
image processing, challenges persist in the RVS task. This is because DNNs typ-
ically rely on a large amount of labeled data to achieve satisfactory performance.
However, the complex structures and intricate branching patterns make vessel
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(a) without open-set label noise (b) with open-set label noise

Fig. 1. A comparison of pseudo masks from fine-tuned SAM to illustrate the open-set
label noise issue, which is indicated by the bounding boxes and arrows in purple.

annotation a labor-intensive and time-consuming process. Therefore, the scarcity
of available labels for training has become a major bottleneck in the RVS task.

The recent surge of various large models [11] has shifted researchers’ focus
from merely advancing model architectures to improving the quality and quan-
tity of training data. Therefore, it is imperative to rethink the RVS task from
a data-centric AI [16] perspective. In real-world scenarios, RVS models are ex-
pected to possess strong domain generalization (DG) capabilities to handle the
huge image diversity that may arise from device or operation variations. However,
the aforementioned label scarcity issue, resulting in an inadequate representation
of the real-world data distribution, severely constrains the DG capability. The
availability of several DR screening datasets provides an opportunity to access
large-scale fundus images (without vessel annotation). In summary, the key to
advancing the RVS field lies in how to leverage minimal labeled data along with
abundant unlabeled data to improve the DG capability.

Segment anything model (SAM) [11], a foundation model trained by billion-
scale masks, has recently revolutionized the natural image segmentation field.
Despite lacking consideration for medical images, previous research [15] has re-
vealed that SAM can generate satisfactory pseudo labels for medical tasks after
a few-shot fine-tuning, which can potentially alleviate the label scarcity issue
in RVS. However, we observed that SAM is likely to generate erroneous predic-
tions for unfamiliar image patterns due to the domain shifts between limited
fine-tuning data and real-world samples. The fine-tuned SAM produces accurate
pseudo labels for a clear fundus image (Fig. 1(a)), but the quality might be mod-
erate for images with unseen patterns, such as bright spots (Fig. 1(b)). This is
called open-set label noises. Therefore, reducing the impact of these label noises
will further unleash SAM’s potential to leverage large-scale unlabeled data.

In this work, we propose SAM-OSLN to identify open-set pixels and mitigate
open-set label noises using explicit and implicit denoising strategies. Our method
effectively alleviates the open-set label noise issue of SAM and further improves
the DG capability of RVS. Our contributions are summarized as: 1) We rethink
RVS from the perspective of data-centric AI, and highlight the importance of
leveraging abundant unlabeled data. 2) We found that although SAM generates
reasonable pseudo labels, it suffers from open-set label noises when handling
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1. Open-set Aware SAM Fine-tuning

2. Context-based Label Denoising 3. Multi-scale Weighting Supervision
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Fig. 2. The overview of our method SAM-OSLN.

extensive real-world data. 3) We propose SAM-OSLN to mitigate the open-
set label noise issue of SAM and more effectively leverage large-scale unlabeled
data. 4) Our approach outperforms previous state-of-the-art (SOTA) methods
on various RVS datasets under synthetic and real-world open-set scenarios.

2 Method

As illustrated in Fig. 2, we utilize a teacher-student framework [8] with SAM
acting as the teacher model Mt. By utilizing pseudo labels and suppressing
the open-set label noises, the knowledge is distilled into the student model
Ms. Concretely, we first conduct open-set aware SAM fine-tuning using a very
limited amount of labeled data Dl = {(xl

i, y
l
i)}Ni=1. Subsequently, for large-

scale unlabeled images Du = {xu
j }Mj=1, we can generate initial pseudo masks

Ŷ = {ŷj}Mj=1 and simultaneously identify possible open-set pixels Ô = {ôj}Mj=1.
Since those pixels might introduce open-set label noises in pseudo masks, we
devised a context-based label denoising strategy to obtain revised pseudo labels
Y = {yj}Mj=1. In addition, considering that the presence of open-set samples
increases training difficulty, we designed a multi-scale weighting strategy to ef-
fectively utilize the large-scale revised labels.

2.1 Open-set Aware SAM Fine-tuning

Our method is initialized with fine-tuning SAM on Dl. To mitigate open-set label
noises, we introduce prototype techniques [26] for possible open-set pixel recog-
nition. Specifically, by forward feeding the training images into feature extractor
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fθ(·) of the fine-tuned SAM, the pixel-level features of training samples could
be collected to build feature pools Pc for each class c according to Eqt. 1, where
c = 0 (background) or 1 (vessel) and h, w indicates height, width indices of an
image. The features in these pools represent closed-set image patterns and have
the potential to identify open-set label noises. To find the anchor point for each
class, we calculate the prototype mc by averaging all the features within each
pool following Eqt. 2. We also define the decision boundary Bc for each class
using the farthest distance from pool features to the prototype (see Eqt. 3).

Pc = {fθ(xl
i)[h,w]|xl

i ∈ Dl, yli = c} (1)

mc =

∑
pc∈Pc

pc

Nc
,where Nc = size(Pc) (2)

Bc = max
pc∈Pc

mc · pc
∥mc∥ ∥pc∥

(3)

By determining whether each pixel-level feature falls within the correspond-
ing decision boundary of any prototype, we can identify possible open-set pixels
ôj for each unlabeled image xu

j according to Eqt. 4. So far, for an unlabeled
image xu

j , its initial pseudo label ŷj and possible open-set recognition ôj could
be obtained based on our open-set aware SAM fine-tuning.

ôj [h,w] =

{
0, if mc·xu

j [h,w]

∥mc∥∥xu
j [h,w]∥ < Bc for each class c

1, otherwise
(4)

2.2 Context-based Label Denoising (CLD)

The initial pseudo labels Ŷ suffer from the open-set label noise issue, i.e., SAM
easily misinterprets some open-set pixels as vessels. We observed that certain
open-set pixels (such as bright spot areas) occur outside vessel boundaries, while
others might lie within vessel regions. Therefore, simply considering all open-set
pixels as background could be an inaccurate strategy. To effectively suppress
open-set label noise, we devised a context-based label denoising approach that
leverages spatial information for label modification. For all the pixels predicted
as vessels in the initial pseudo labels, our goal is to eliminate the open-set label
noises and preserve the true vessel labels. Specifically, we designate pixels that
meet two criteria as modification candidates S: 1) predicted as vessels in the
initial pseudo labels, and 2) identified as possible open-set pixels, based on Eqt. 5.
For each candidate pixel, we proposed a neighbor-voting approach given by Eqt. 6
to extract its contextual information, where N∗(h,w) denotes the neighborhood
of pixel (h,w). A pixel lacking nearby closed-set vessel predictions is more likely
to be an isolated open-set label noise and should be reclassified as background.
Otherwise, the candidate pixel should be retained as a vessel. By applying this
process to each candidate pixel, we could obtain revised pseudo labels Y =
{yj}Mj=1 where open-set label noises have been suppressed.
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S = {xu
j [h,w]|xu

j ∈ Du, ŷj [h,w] = 1, ôj [h,w] = 1} (5)

yj [h,w] =

{
0, if

∑
h′,w′∈N∗(h,w) ŷj [h

′, w′] · (1− ôj [h
′, w′]) > 0

1, otherwise
(6)

2.3 Multi-scale Weighting Supervision (MWS)

Since accurately identifying open-set pixels is fairly challenging, the revised
pseudo labels might not be completely noise-free. Furthermore, those severe
open-set samples could intensify the training difficulties. Therefore, simply em-
ploying the revised labels to train the student model is sub-optimal. We observed
that open-set label noises show inconsistent distribution across multiple scales,
with some images and regions exhibiting a higher prevalence of such label noises.
Therefore, we devised a multi-scale weighting strategy to further mitigate the
impact of label noise based on the distribution of open-set pixels. In general,
our strategy involves evaluating the degree of open-set pixels at multi-scale to
obtain weights at the image-, patch-, and pixel- levels, i.e., λim, λpa, λpi, which
are subsequently used to weight the loss function for training the student model.
We assign λpi = 1 to all closed-set pixels, and determine the weights for open-set
pixels based on the distance to the prototypes according to Eqt. 7.

dist(xu
j [h,w]) =

1

C

C∑
c=0

mc · xu
j [h,w]

∥mc∥
∥∥xu

j [h,w]
∥∥ (7)

λ(rs) =
2Ns − rs − 1

2(Ns − 1)
(8)

After collecting and ascendingly sorting distances of all open-set pixels, we
obtain the pixel-level ranking. Patch-level ranking is determined by the ascending
order of the number of open-set pixels in each patch. Similarly, we can also have
the image-level ranking. After collecting pixel-, patch-, and image- rankings, we
can then determine the weights for each scale based on Eqt. 8, where rs and Ns

represent the ranking and total sample size of each scale, respectively. Based on
the modified labels and corresponding multi-scale weights, we can compute the
loss for each unlabeled data xu

j during the student model training using Eqt. 9.

L(xu
j ) =

H,W∑
h=1,w=1

λim · λpa · λpi · |Ms(x
u
j )[h,w], yj [h,w]|loss (9)

3 Experiments

3.1 Summary of Open-source Fundus Datasets

We collected representative open-source datasets for fundus images and provided
an analysis from the perspective of data-centric AI. As mentioned in Sec. 1, due
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to annotation challenges, RVS datasets typically contain only a small number
of vessel labels. Apart from FIVES [10] with 800 annotations, the majority of
those datasets contain only a few dozen labels. Furthermore, there are obvious
domain shifts across different RVS datasets. Since fundus photography is an eco-
nomical and non-invasive imaging tool widely used in DR screening [6], some DR
grading datasets like EyePACS [7], while lacking pixel-level vessel annotation,
typically contain a large number of fundus images collected from real-world sce-
narios. These images reflect various interferences that arise during the imaging
process, such as bright spot artifacts, inappropriate exposure intensity, and mo-
tion blur. Therefore, we aim to investigate more effective ways of utilizing the
limited annotated data to learn vessel patterns and leveraging abundant unla-
beled data to enhance DG capability, achieving robust RVS. Our method would
be investigated on those datasets under both synthetic and real-world settings.

3.2 Implementation Details

Our experiments were conducted using a GeForce RTX 3060 GPU and PyTorch
1.12.1. We followed SAM-Adapter [3] to fine-tune the ViT-B version of SAM on
Dl. TransUnet [2] was adopted as our student model. The 400 training epochs,
initial learning rate of 0.001, an ADAM optimizer (β1 = 0.9, β2 = 0.999), batch
size of 3, and cross-entropy loss were leveraged. Data augmentations were random
horizontal/vertical flipping, and rotation. All images were resized to a unified
resolution of 512. The patch size was 64. N∗ was set to 5× 5 neighbor pixels.

3.3 Comparison on Synthetic Open-set Interference

We herein investigate the capability of our method to generate pseudo labels
under varying synthetic open-set interference. First, we randomly selected only
10 clean labels from FIVES [10] to train models, and the remaining 790 samples
were introduced with open-set interference for evaluation. We utilized CVC-
ClinicSpec [19] dataset, which consists of 58 colonoscopy images with pixel-level
masks of bright spot areas, as the source of open-set interference. By extract-
ing the specular highlight regions from CVC-ClinicSpec and merging them into
evaluating samples of FIVES, we were able to synthesize fundus samples with
open-set interference. It is worth noting that with a 1:1 intensity blending ra-
tio, the open-set interference is only introduced to the image and does not alter
the semantic labels of vessels. To comprehensively assess the robustness of our
method in generating pseudo labels for synthetic open-set images, we imple-
mented three levels of open-set interference based on the ratio α of open-set
pixels to vessel pixels: mild α = 0.15, moderate α = 0.30, and severe α = 0.45.

As shown in Tab. 1, we compared the quality of pseudo labels generated by
our method with the classical self-training [13] and fine-tuning SAM [3] under
multiple levels of open-set interference using Dice score and intersection over
union (IoU). Experimental results indicate that due to the generalization capa-
bility of the foundation model, fine-tuned SAM exhibits stronger robustness and
produces better pseudo labels with limited training labels, resulting in a 12.7%
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Table 1. Comparisons of the quality of pseudo labels with several methods under
various open-set interferences on FIVES. The best performance is marked in bold.

Methods Clean(α = 0) Mild(α = 0.15) Moderate(α = 0.30) Severe(α = 0.45)
Dice (%) IoU (%) Dice (%) IoU (%) Dice (%) IoU (%) Dice (%) IoU (%)

Self-training [13] 64.5 48.9 56.4 40.6 50.5 34.9 45.6 30.5
Fine-tuned SAM [3] 77.2 61.7 72.5 55.6 68.5 51.1 64.5 46.6

SAM-OSLN (w/o MWS) 79.1 65.6 75.5 60.4 71.8 56.0 68.1 51.7

Dice increase on clean samples than self-training. As the level of open-set inter-
ference increases, fine-tuned SAM tends to make erroneous predictions leading
to a performance decline. Our method, however, explicitly revises open-set label
noises, consistently improving pseudo label qualities regardless of the interfer-
ence degree. Compared to fine-tuned SAM, our method improves by 3.9 IoU on
clean samples and 5.1 IoU under severe interference, respectively.

3.4 Comparison with SOTA Methods on Real-world Settings

An RVS benchmark was constructed to simulate real-world scenarios, as reported
in Tab. 2. We included only 10 STARE [9] data as a limited label source along
with 35,126 unlabeled data from EyePACS [7] as large-scale fundus images.
Six RVS datasets were utilized to evaluate the algorithms’ DG capability and
robustness based on mean and minimum Dice scores, respectively.

We included SOTA methods of several kinds and explored how to achieve
superior RVS performance in real-world scenarios, as shown in Tab. 3. First,
we trained U-Net [18] with the 10 labels as the baseline. We then compared
SOTA RVS methods, that utilize techniques like vessel structure priors [5, 20]
and learnable data augmentation [14]. These methods achieved improvements
over the baseline, such as a mean Dice of 63.0 from AADG [14] and a min.
Dice of 46.5 from DRIS-GP [5] compared to the baseline. Constrained by the
limited involvement of training samples, RVS methods do not yield consider-
able improvements in DG performance. Therefore, we compared semi-supervised
learning (SSL) methods which utilize abundant unlabeled data. CPS [4] achiev-
ing 65.3 mean Dice highlights the value of large-scale data. However, the lack of
consideration for the scarcity of labels and the domain shift problem of unlabeled
data led to inconsistent improvements in SSL methods. For example, due to the
poor quality of generated pseudo labels, Unimatch [24] performed worse than
the baseline. To this end, we also trained noisy label learning (NLL) approaches
using pseudo labels from fine-tuned SAM. Attributed to the improved quality
of pseudo labels, P&L [27] increased mean Dice to 67.0. However, as the NLL

Table 2. The details of our RVS benchmark for evaluation under real-world scenarios.

Labeled Unlabeled Domain Generalization Evaluation Datasets
Dataset STARE EyePACS IOSTAR ORVS DR-HAGIS Les-AV RETA TREND
Number 10 35,126 30 49 40 22 54 82
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Table 3. Quantitative comparisons of SAM-OSLN with SOTA methods on the real-
world benchmark. The best results are marked in bold. Our method outperforms the
comparative algorithms, especially with a considerable improvement in min. Dice.

SOTAs Multi-domain Evaluation Dice Scores (%)
Type Methods IOSTAR ORVS HAGIS Les-AV RETA TREND Mean↑ Min.↑

Baseline 53.3 41.0 69.1 69.0 72.0 56.9 60.2 41.0

RVS
DRIS-GP[5] 66.5 52.2 54.4 64.4 66.0 46.5 58.3 46.5
SkelCon[20] 69.1 57.1 64.5 71.0 69.7 46.1 62.9 46.1
AADG[14] 68.6 65.1 59.7 69.6 70.1 45.0 63.0 45.0

SSL

MT[21] 68.6 39.0 68.9 78.1 76.8 52.3 63.9 39.0
Co-T[17] 65.5 39.6 69.8 77.5 76.7 54.0 63.8 39.6
CPS[4] 70.1 40.7 69.9 77.2 78.1 55.6 65.3 40.7

U2PL[22] 68.7 59.4 69.9 71.5 68.7 43.1 63.6 43.1
Unimatch[24] 63.5 41.8 64.4 71.8 65.6 51.1 59.7 41.8

NLL
P&L[27] 72.9 40.5 73.0 80.7 76.3 58.3 67.0 40.5

CL+SLSR[25] 72.0 40.9 73.1 80.5 75.1 58.2 66.6 40.9
MTCL[23] 68.4 40.0 71.3 79.9 76.5 56.6 65.5 40.0

Ours
SAM-OSLN 76.6 69.3 75.5 83.5 77.5 62.9 74.2 62.9
w/o CLD 74.2 68.9 74.7 82.8 73.3 60.7 72.5 60.7
w/o MWS 75.9 68.2 70.5 81.2 72.6 54.7 70.5 54.7

(a) Image (b) GT (c) Ours (d) AADG[14] (e) CPS[4] (f) P&L[27]

Fig. 3. Qualitative illustrations of SAM-OSLN versus previous SOTA methods.

strategies are usually designed for manual annotation rather than automatically
generated ones, these methods still did not achieve satisfactory performance in
robustness. Through leveraging massive amounts of unlabeled data and address-
ing open-set label noise issues, SAM-OSLN achieved the best mean Dice of 74.3
and minimum Dice of 63.2, surpassing previous SOTA methods. The ablation
study demonstrates that the explicit label denoising method CLD and the im-
plicit loss weighting strategy MWS both contributed positively to our approach.
Qualitative comparisons on the Les-AV dataset in Fig. 3 show the superior seg-
mentation performance of our method compared to previous SOTAs.

4 Conclusion

We provide a rethinking for the RVS task from the perspective of data-centric AI
and argue that effectively utilizing a large amount of unlabeled data in scenarios
with extremely limited labeled data is crucial for improving DG capability. To ad-
dress this challenge, we propose a solution that leverages SAM as a high-quality
pseudo label generator and mitigates the open-set label noise issue. Compara-
tive experiments, both under synthetic and real-world settings, demonstrate the
superior performance of our method compared to previous SOTA approaches.
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Although our current effort is concentrated on alleviating the detrimental effects
of open-set label noise during the exploitation of unlabeled data for model ro-
bustness, several other aspects remain unaddressed. Specifically, the deficiency
of fine-scale vessels and the utilization of prior knowledge of vessel morphology
are areas that are worth exploration in future research.
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