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Abstract. Brain tumor segmentation and detection have advanced sig-
nificantly with the introduction of multimodal magnetic resonance imag-
ing. However, data privacy concerns restrict most studies to central-
ized environments, limiting their real-world applicability. While federated
learning (FL) offers a privacy-preserving solution for cross-institutional
brain tumor research, existing multimodal FL approaches primarily ad-
dress scenarios wherein clients possess either a single modality or com-
plete missing modality data. These methods fail to account for the modal-
ity heterogeneity caused by arbitrary missing modalities, a frequent chal-
lenge in clinical practice. To address this issue, we propose FedAMM, a
novel FL framework designed for brain tumor segmentation under ar-
bitrary missing modalities. FedAMM incorporates multiple strategies
to mitigate discrepancies arising from varying modality combinations
across clients. First, Fed AMM introduces a unimodal prototype distil-
lation technique during local training to balance the contributions of
different modalities. Additionally, the server aggregates multimodal pro-
totypes uploaded by clients to generate cluster centers that represent the
global modality distribution, thereby guiding local training toward global
optimality. Furthermore, we implement a weighted aggregation strategy
based on modality proportions. Experimental results on the BraTS52020
dataset demonstrate that Fed AMM outperforms existing methods in
handling arbitrary missing modalities, highlighting its strong adaptabil-
ity to imbalanced and heterogeneous federated systems. The code is avail-
able at https://github.com/13sky/FedAMM.git.

Keywords: Federated learning - Modality missing - Medical image seg-
mentation - Brain tumor segmentation.

1 Introduction

Multimodal learning plays a key role in disease diagnosis and treatment [1, 2],
integrating information from multiple medical imaging modalities significantly
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enhances diagnostic accuracy and comprehensiveness. Among these imaging
modalities, multimodal magnetic resonance imaging (MRI) has demonstrated
remarkable progress in brain tumor segmentation [3]. By leveraging the com-
plementary information from T1-weighted (T1), post-contrast T1 (T1c), T2-
weighted (T2), and fluid-attenuated inversion recovery (FLAIR) modalities, seg-
mentation models can more precisely capture tumor characteristics [4]. However,
data privacy constraints restrict most current studies [5, 6] to centralized learning
scenarios. For instance, in clinical practice, medical data are typically distributed
across multiple hospitals and institutions, and patient privacy concerns preclude
direct data aggregation for model training [7]. Thus, privacy challenges pose a
significant barrier to the adoption of multimodal segmentation technologies in
cross-institutional research.

Federated learning (FL), a privacy-preserving distributed learning frame-
work, presents a potential solution to the above issues as it enables collabo-
rative model training without requiring raw data exchange [8]. This approach
has demonstrated promise across various domains, including medical imaging [9].
However, in practical applications, the phenomenon of modality missingness [10]
is widespread owing to differences in imaging protocols, equipment, and clinical
constraints, posing a significant challenge for multimodal FL approaches [11]. Ex-
isting centralized methods [12-14] typically address missing modalities through
zero-filling or data generation, disregarding the inherent correlations among dif-
ferent modalities. Consequently, these methods are not directly applicable to
federated scenarios. In FL, missing modalities [15] are classified into two groups:
complete missingness, where each client consistently lacks a specific modal-
ity across all samples, and arbitrary missingness, where different samples
for the same client have varying combinations of available modalities. Although
approaches such as FedNorm [16] and FedMM [17] mitigate complete missing-
modality instances using regularization and representation learning, they are
ineffective at handling the more complex challenge of arbitrary missing modali-
ties, where modality combinations vary across samples for the same client. This
inconsistency leads to severe distribution shifts, which is a key limitation that
the proposed Fed AMM approach is designed to overcome. Compared to com-
plete missingness, arbitrary missingness introduces greater heterogeneity across
samples and clients owing to the uneven distribution of modalities. Further-
more, the global model must perform well under all potential missing-modality
combinations during inference.

To address this critical challenge, we propose FedAMM, a federated brain
tumor segmentation method specifically designed to handle arbitrary missing
modalities. Previous research [18,19] indicates that different modalities con-
tribute unequally to model performance, resulting in significant modality im-
balances during training when samples contain varying modality combinations.
To counter modality imbalances, especially dominance in model updates, we
propose prototype [20, 21] distillation for balanced information sharing. This ap-
proach ensures that each modality, regardless of its combination, meaningfully
contributes to the model’s predictive performance. Furthermore, to address the
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inter-client heterogeneity introduced by missing modalities, each client’s learned
prototypes are uploaded to the server and categorized based on modality com-
binations. Representative prototypes are then selected to regularize local mod-
els, aligning them and minimizing divergence across clients. Finally, instead of
relying on conventional data-volume-based aggregation, we aggregate model en-
coders based on the number of available modalities. This strategy mitigates the
heterogeneity introduced by arbitrary missing modalities and enhances infer-
ence performance across all possible modality combinations. To the best of our
knowledge, this is the first study to examine arbitrary missing modalities in the
context of FL for brain tumor segmentation.

The primary contributions of this study include the following: 1. We present
the first study on arbitrary missing modalities in multimodal FL, addressing a
more realistic and practical challenge. 2. We introduce a prototype-based strat-
egy to balance cross-modality discrepancies and mitigate client heterogeneity,
further alleviating distribution mismatches through modality-specific encoder
aggregation. 3. The proposed method outperforms previous approaches on public
brain tumor segmentation datasets under diverse missing-modality conditions.

2 Method

This study focuses on the collaborative task of brain tumor segmentation with
missing modalities across K clients. First, each client’s dataset is defined as
Dy = {(n,yn)}Y*,, with each sample z,, = {z',2%, 2%, ...,2™} containing up
to M modalities, all sharing the same ground truth y,. Accounting for potential
missing modalities, the number of possible non-empty modality subsets is M =
2M 1. The modality combination for each sample is denoted as 7m redefining X,
as X™, where m € {1,2,..., M}. We consider a scenario wherein the modality
combinations for each sample X, are arbitrary. To handle this scenario, we
train a global model using all available modality information from the datasets,
allowing it to generate predictions for samples with any modality combination
during inference. The objective is to optimize the following loss function:

K Ng

LSS L (f (6,47 y))  where,m e (1,2, 5} (1)
> k=1 Ve k=1n=1

To this end, we propose Fed AMM. Fig.1 illustrates the overall framework of
this approach. We employ a classical multimodal segmentation model comprising
four modality-specific encoders and a shared decoder. For incomplete modality
inputs, only the available modality encoders are activated, and their fused rep-
resentations are decoded to produce final predictions. To address the imbalance
introduced by modality heterogeneity across different samples, in addition to
the widely used cross-entropy loss L.. and Dice loss Lgice [22], we introduce
an intra-client modality balance loss L,,; and an inter-client modality combina-
tion balance loss L,,.. Furthermore, we optimize the model aggregation stage to
enhance performance.

argmin
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Fig. 1: Overview of the proposed Fed AMM.

Intra-client Modal Balance. Given the varying distribution patterns of pixel
classifications across modalities, the training process frequently favors the modal-
ity containing richer information, referred to as the "fast" modality, while the
other is termed the "slow" modality [23]|. Under these circumstances, the model
learns incompletely from the slow modality and biases itself toward the fast
modality. To mitigate this imbalance, we propose enriching unimodal represen-
tations by transferring knowledge from multimodal representations to individ-
ual modalities, thereby negating the impact of information differences. Drawing
inspiration from prior studies [24,25], we introduce prototype knowledge distil-
lation. Here, the prototype for each modality is computed based on the class
features of the pixels in the modal representation. In this case, the multimodal
representation serves as the teacher prototype pfl,c, while the unimodal represen-
tation acts as the student prototype p;'., enabling knowledge transfer between
modalities. The prototypes are defined as follows:

~ I
pt - Ele Unil [yn,i = C] o= Z =1 yn il [yn i = C] 2)
n,c I n,c I
Zi:1 Iyn,: = | Zi:1 I [yn,i =

where [ indicates the number of pixels in the modality, C' denotes the classifica-
tion, § indicates pseudo labels, and I[y, ; = ¢| represents an indicator function
that equals one if y,, ; = ¢ and zero otherwise. We use cosine similarity to quantify
the similarity between the pixel class prototype and the pseudo label, capturing
semantic information both within and between classes:

pnc p'n,c
Z Hyz Z Hy ol ®)

|| gl % c I ||P

where P}, and P}, denote the semantic prototypes of the teacher and student
modalities, respectively. To balance the knowledge disparity between modalities,
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we minimize the distance between unimodal and multimodal semantic prototypes
using L2 loss, defined as the modal distillation loss:

I C
mo =3 "N\ Bri) - PLG)|) (4)

i=1 c=1

The semantic difference between unimodal and multimodal is defined as:

1 C
D=3 > IPr) — Py ()], (5)

i=1 c=1

A larger value of D] indicates that modality m is a slow modality, implying
that its learning proportion should be increased. The imbalance rate between
any two single modalities is defined as follows:

g

;Do .
pj=D? i,j € M,i#j (6)

We regulate the loss weights using coefficients « and 3, determined as follows:

; _ . (7)
a:O,B:Clip(O,p;—l,l) p; =1

{azclip(O,fﬁ—l,l),ﬁzOp;i <1
where i and j represent any two modalities, and the clip function bounds the
loss weight between 0 and 1. The modality-balanced loss is formulated as:

Loy = all,+BL1 05 €M and i+ j (8)

For all available modalities, we compute the modality balancing loss over each
pair of modalities to ensure that no single modality dominates the optimization
process.

Inter-client Modal Combination Balance. While the previous section fo-
cused on intra-client knowledge transfer from multimodal representations to bal-
ance cross-modal information disparities within clients, global modality distri-
bution differences persist across clients owing to variations in available modal
combinations. To address this, we introduce a global mixed-modal semantic pro-
totype library to harmonize client model training. In particular, we aggregate
semantic prototypes from all client samples on the server and categorize them
into modal combination groups, defined as: PLY = {PLL PL2 . P} We

then apply k-means clustering to derive global cluster centroids, denoted as:

P9M = Cluster{PLL, PL2, . PLTY = P91 P92 pom} 9)

n,cr * n,cr

These centroids P9 represent unified semantic references for each modal com-
bination, effectively mitigating interclient model discrepancies. To align client
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sample prototypes with the global centroid prototypes of their modality combi-
nation, we use L2 loss, defined as:

ZZHP“” — P (i) (10)

i=1 c=1

Given that each client has a different number of modal combinations, we
design weights for the modal combination loss based on the modal combination
ratio. We determine the number of samples d}* = {d*,d?,...,dM} for each modal
combination in a client’s training dataset, with d denoting the global number of
samples. The weight 4™ is then computed as:

_ d'"L _
"= PR ,me{l,2,.., M} (11)

Thus, the local modal combination loss is expressed as follows: L,,. = 4™ L7,

Modality-weighted Aggregation. Traditional FL methods typically use data
volume weights to aggregate client models during the model aggregation phase.
However, in multimodal models, the actual knowledge learned by each modality-
specific encoder does not include sample size but the number of modalities.
To account for this, we aggregate the M modality-specific encoders based on
modality ratio and combine shared decoders based on data volume. Specifically,
we calculate the number of samples for each modality in each client, denoted
as s}'. The total number of samples for each modality across all clients is then
given as s™ Zk 1 sk The weight for each modality-specific encoder is then

computed as w}' = =, m € {1,2,...,M}. Thus, the aggregation of the global
model proceeds as follows

K
D
F,= Z{wi x Enc,w? « Enck,...,w™ « Enc, fk * Decy } (12)
k=1

where Fj; represents the global model, Enc]* denotes the m-modality-specific
encoder for client k, and Decy represents the shared decoder for client k.

3 Experiments

Dataset and Settings. We evaluated our method on widely used brain tu-
mor segmentation benchmarks from the BraTS2020 challenge [26], which in-
cludes MRI scans from 369 subjects. Here, each subject has four MRI modali-
ties: FLAIR, T1, Tlc, and T2. Following previous studies, we preprocessed the
data and split them into 219, 50, and 100 subjects for training, validation, and
testing, respectively. The ground truth annotations defined three nested tumor
subregions: whole tumor (WT), tumor core (TC), and enhancing tumor (ET).
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Table 1: Performance comparison of Fed AMM with State-of-the-art Methods
for tumor region segmentation (WT, TC, ET) under varying levels of modality
heterogeneity on BraTS2020.
a = 0.001 a=0.1 a=1
WT TC BT Avg | WI TC ET Avg | WI TC BT Avg
FedAvg 73.42 57.75 43.09 58.09|79.42 69.24 53.40 67.35|83.39 72.35 56.36 70.70
FedProx 69.08 55.68 43.61 56.12|79.24 69.02 54.25 67.50|82.97 72.43 54.47 69.96
FedNorm 70.29 54.72 42.25 55.75|78.86 68.06 52.04 66.32|82.40 66.90 53.65 67.65
FedMM 75.46 60.28 47.00 60.91|80.00 70.33 54.74 68.36|82.72 72.54 55.75 70.34
FedMEMA |[76.19 60.42 48.59 61.73]82.01 70.21 55.07 69.10|84.04 73.82 57.83 71.90
FedAMM{(ours)|82.19 72.34 54.62 69.71|83.86 74.32 56.67 71.62(85.04 76.85 58.20 73.36

Method

To simulate a realistic scenario with missing modalities, the training set is
evenly partitioned into four clients, with modality distribution controlled by the
Dirichlet parameter a. When o = 1, samples tend to have completely missing
modalities. As « decreases, the setting progressively shifts toward an arbitrar-
ily missing modality scenario, leading to higher modality heterogeneity among
clients. We use the Dice similarity coefficient [27] as the performance metric.

Implementation Details. We implemented Fed AMM using PyTorch 1.11.0
and trained it on four RTX 4090 GPUs. Each client model was trained on a sep-
arate GPU, with one GPU reserved for server-side aggregation. For fairness, all
methods use RFNet [28] as the backbone network. Local training was performed
with a batch size of one using an Adam optimizer with a learning rate of 0.0002
and a weight decay of 0.0001. The model was trained for 1,000 rounds, with each
round comprising one epoch of local training.

Comparison with State-of-the-art Methods. We compared Fed AMM with
several baseline methods, including FedAvg [29], FedProx [30]|, FedNorm [16],
FedMM ([17], and FedMAME [31]. Among these, FedAvg and FedProx address
unimodal heterogeneity, while FedNorm, FedMM, and FedMAME focus on mul-
timodal scenarios.

Table 2: Performance comparison of FedAMM and State-of-the-art Methods
across 15 modality combination scenarios.

Flair ® O ®© e e e e O e O e e o o o

Tle e e e O e e O O O e e O o e ©

Tl e ¢ O e e O O e o e O o e o o |Ne
T2 e © o e O O e ®e O O e O o o e

FedAvg 70.83 69.79 69.91 53.91 70.90 69.48 53.01 50.29 50.95 61.70 67.90 46.97 33.15 55.66 46.82|58.09
FedProx 69.64 66.26 69.54 52.20 68.56 69.26 53.91 46.60 49.65 56.83 65.92 49.33 20.63 54.97 48.48 |56.12
FedNorm | 69.17 66.52 68.20 52.63 68.65 66.91 51.97 48.79 48.76 58.38 65.20 47.46 21.01 56.37 46.25|55.75
FedMM 74.24 71.59 75.20 56.78 72.19 75.32 57.53 53.03 49.46 58.41 72.39 51.46 28.14 65.12 52.89|60.91
FedMEMA | 77.77 75.09 77.56 56.83 77.01 76.95 57.55 52.08 51.65 53.80 74.52 51.76 28.54 65.40 49.51 |61.73
Fed AMM (our)|80.39 78.75 79.84 64.05 79.81 78.78 63.55 62.54 60.52 77.28 79.44 57.14 50.45 75.04 58.12(69.71
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Table 3: Ablation study results show-
ing the impact of three key com-
ponents on the performance of the
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Fig. 2: Visualization results of FedAvg
and FedAMM predictions under four
modality combinations.
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We evaluated the performance of all methods on 15 modality combinations
under three different levels of missing modality scenarios. Table 1 shows that as
modality heterogeneity increases, all methods suffer performance degradation.
However, Fed AMM remains more stable than others. Specifically, FedProx, de-
signed to address data heterogeneity in unimodal settings, proves ineffective in
multimodal scenarios and performs comparably to FedAvg. Notably, FedNorm
performs even more poorly than FedAvg, likely owing to its simplistic modal-
ity normalization approach, which prevents the model from capturing the rich
semantic information across modalities. While FedMM and FedMAME demon-
strate improvements over FedAvg, their performance gains remain limited com-
pared to Fed AMM. Specifically, when o = 0.001, FedAMM outperforms FedAvg
by 20% and the second-best method, FedMEMA, by 12%.

Table 2 presents a comparison of inference performance across different modal-
ity combinations. The results indicate that FedAMM performs comparably to
other methods when inferring from samples with a greater number of modalities.
However, as the number of modalities decreases, Fed AMM demonstrates notably
superior inference performance. Overall, the visualization results in Fig.2 indi-
cate that FedAMM produces better segmentation outcomes than the baseline
methods across various modality combinations.

We attribute the observed performance improvement to FedAMM'’s ability to
transfer knowledge from multimodal settings to unimodal samples while main-
taining consistency across client models. This dual capability enables Fed AMM
to achieve competitive performance in multimodal combinations while signifi-
cantly enhancing performance in low-modality scenarios. Consequently, Fed AMM
consistently outperforms all baseline methods in terms of overall performance.

Ablation Study. To evaluate the effectiveness of the three key components in
FedAMM, we conducted an ablation study, as shown in Table 3. When none of
these components are used, Fed AMM degenerates into FedAvg. We found that
the modal balance loss has a greater impact on the performance of FedAMM
compared to the modal combination loss when they are used separately. We
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believe this is because, when there are significant modality differences within
a client, merely balancing sample combinations across clients provides limited
improvement. By combining both losses, the model’s performance is significantly
enhanced, which further validates our hypothesis. Finally, a modality-based
model aggregation strategy further reduces inter-client differences and enhances
overall performance. In summary, these three key components play a crucial role
in enhancing the performance of Fed AMM.

4 Conclusion

This study presents an FL framework for multimodal brain tumor segmentation
that effectively addresses heterogeneity caused by arbitrary missing modalities.
Our method balances intra-client modality variations while ensuring model con-
sistency across clients. Additionally, a modality-weighted aggregation strategy
enhances global performance. Experiments on the BraTS2020 dataset demon-
strate the framework’s superior and robust segmentation performance across
various modality combinations, highlighting its potential for real-world multi-
modal medical imaging applications. Future research will focus on expanding its
applicability, improving adaptability, and enhancing privacy preservation.
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