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Abstract. Image-guided cerebral artery navigation (CAN) system can provide 
precise guidance for intracranial artery examination and surgery by aligning 3D 
medical data with patient’s head observed by a depth sensor. Existing CAN sys-
tems generally suffer from either susceptibility to location marker offset or weak 
efficiency. This paper presents a real-time marker-less method to track the pa-
tient’s head pose based on the MRI data for CAN. Briefly, the 3D facial model 
is constructed from the patient’s MRI data in the pre-operative stage. Then, a 3D 
local description is proposed to encode the local geometry of the facial model via 
thin plate spline function. Subsequently, according to the local description of the 
facial model, the patient’s head observed by an RGBD camera is registered with 
the facial model by maximum weight matching. Eventually, the head pose is ac-
curately tracked in real-time via square-root cubature Kalman filter (SCKF) and 
iterative closest point algorithm (ICP) during navigation. With each estimated 
head pose, the patient’s vessels in MRI data are visualized onto the RGB image 
of the patient’s head for CAN. The proposed method is evaluated on comprehen-
sive experiments, showing the best core performance metrics than all comparison 
methods. The average rotational and translational errors of our method are 2.6° 
and 1.9 mm respectively on the BIWI dataset. The average tracking rate achieves 
0.06 s.  

Keywords: Cerebral Artery Navigation, Marker-less Head Tracking, Feature 
Matching, 3D Local Descriptor. 

1 Introduction 

Image-guided cerebral artery navigation (CAN) system can determine the 6-degree-of-
freedom (DOF) pose between the 3D medical data (such as MRI) and the patient's head 
observed by a depth sensor (such as RGBD camera), and then provide stable and relia-
ble visual guidance for intracranial artery examination and surgery, such as transcranial 
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Doppler (TCD) examination [1] and vascular surgery [2]. Accordingly, visual CAN has 
become a crucial research topic in the field of biomedical engineering.  

Existing CAN systems can be categorized into marker-based and marker-less meth-
ods. Marker-based methods align the 3D medical data with the patient’s head by some 
fiducial markers attached to the patient's head [3], [4]. Such kind of methods can offer 
sub-millimeter-level pose accuracy, but they are vulnerable to marker perturbation and 
may lead to discomfort for patients during clinical procedures. In contrast, marker-less 
methods register the 3D medical data to the patient’s head using per-frame global 3D 
registration and histogram-based local feature descriptors, such as Point Feature Histo-
grams [5], [6], thus suitable for extensive clinical applications. However, the per-frame 
global 3D registration often suffers from limited real-time performance, and existing 
histogram-based descriptors provide relatively weak descriptiveness for flat facial re-
gions, which easily leads to feature mismatching. Some robust strategies, such as M-
estimate [7] and RANSAC [8], can improve the robustness of feature matching, but 
they will further reduce the efficiency of CAN.  

Recently, substantial novel methods have been proposed to address marker-less head 
pose tracking. These methods generally fall into two categories: regression-based and 
optimization-based methods. Regression-based approaches train a regressor to map the 
face data observed by a sensor directly to the head pose [9], [10]. These methods require 
large training datasets for tracking accuracy and struggle with cross-sensor generaliza-
tion. Furthermore, most of these methods can only provide 3-DOF head pose, which 
does not meet the requirement of CAN. Optimization-based approaches determine the 
head pose with global optimization algorithm [11], [12]. These methods have the ad-
vantage of stability but suffer from relatively low efficiency.  

 

Fig. 1. Workflow of the proposed tracking system. 

This paper presents a marker-less system to track the pose of patient’s head with the 
MRI of patient’s head and a calibrated RGBD camera in real-time for CAN. The work-
flow of the proposed system is shown in Fig. 1, where k denotes the index of time 
instant. In the preoperative stage, the 3D facial model is automatically constructed from 
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patient's MRI, and the local surface around each keypoint of the facial model is de-
scribed with a thin plate spline function (TPSF). At the beginning of CAN (k=0), the 
3D biomarkers are retrieved from the point cloud of the patient's head observed by an 
RGBD camera. Then, according to the local description of model keypoints, the head 
pose is estimated by matching the biomarkers with model keypoints via maximum 
weight matching algorithm of graph. At each subsequent instant (k>0), the head pose 
is tracked in real time by ICP with the prediction of SCKF as initial value. After that, 
the SCKF gives the final maximum a posteriori estimate to the head pose and mean-
while predicts the pose of the next instant. With the final head pose, the system visual-
izes the cerebral arteries in MRI onto the RGB image of the patient’s head for CAN by 
intensity perspective projection (MIPP). 

2 Methodology 

2.1 Coordinate System and Motion Representation 

The proposed tracking system observes the patient's head with an RGBD camera, which 
consists of a depth camera and an RGB camera. On the depth camera and RGB camera, 
there exist a depth camera coordinate system (CCSdepth) and an RGB camera coordinate 
system (CCSrgb) respectively. The intrinsic parameters of the RGBD camera and the 
transformation Td

r from CCSdepth to CCSrgb can be known a priori from calibration. 
Given the MRI coordinate system (MCS), the pose of the patient’s head is defined as 
the relative transformation Tm

d from MCS to CCSdepth. Once Tm
d is obtained, the trans-

formation Tm
r from MCS to CCSrgb is equal to Td

rTm
d. The cerebral vessels in MRI can 

be visualized and superimposed on the RGB image of the patient's head with Tm
r via 

MIPP. Tm
d consists of a rotation matrix R and translation vector t. We parameterize R 

in SO(3) for unambiguity [15]. Let Ω denote the rotation vector associated with R. Then, 
the head pose can be simply represented by a 6-dimensional pose vector p =[ΩT tT]T.   

2.2 Facial Model Construction 

In the preoperative stage (see the orange box in Fig. 1), a deformable curve-based edge 
tracking method is employed to automatically construct a 3D facial model from the 
patient’s MRI data. This method begins with identifying the head region in each MRI 
slice and then extracts the face edge from each slice by snake-like optimization. Finally, 
the facial model is constructed by combining all extracted face edges in order. On the 
facial model, several keypoints {qi, i=1, 2, …, n} are extracted by voxel grid down-
sampling [8]. This method builds a 3D voxel grid on the facial model and selects the 
point nearest to each voxel center, yielding uniform keypoint distribution. At each key-
point qi, a local reference frame (LRF) is established with the model points contained 
in the neighbor sphere of the qi [8]. Under the LRF, we consider the local surface where 
qi is located can be parameterized by a relatively flat and smooth function z=Fi(x,y), in 
which x, y and z are the three coordinates of a point on the local surface in LRF. Ac-
cordingly, the thin plate spline function (TPSF) is quite suitable for expressing Fi(x,y) 
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where L denotes the supporting radius of the neighbor sphere of qi; N is the number of 
control points uniformly sampled on the xy-plane of LRF, each of which has the coor-
dinate of (xl, yl), (xl, yl)∈[-L, L]×[-L, L]; U(r)=r2lnr is the radial basis function, and 
{m0, m1, m2, ω1,…, ωN} are the N+3 parameters of Fi(x,y). In (1), L and N are hyper-
parameters, which will be determined in section 3.1. Given that there are m model 
points within the neighbor sphere of qi, each of which has the coordinate of (us, vs, ws) 
in LRF, s=1, 2, …, m, then the parameters of TPS can be determined by  
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2.3 Pose Initialization 

At the start of head tracking (k=0), after acquiring the RGB image and 3D point cloud 
of patient's head, the system first employs a pre-trained ResNet50-Unet network [13] 
to extract from the RGB image the 2D facial biomarkers, including inner and outer eye 
corners, the nose root, philtrum, nose tip, mouth corners, and chin tip  (see the blue box 
in Fig. 1), and then obtain the 3D biomarkers by back-projecting the 2D biomarkers 
onto the 3D point cloud. Supposing that there are w 3D biomarkers obtained {Bj, 
j=1, …, w}, the dissimilarity between the neighborhoods of the model keypoint qi and 
Bj can be calculated in the LRF established at Bj as 

    2
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where kj represents the number of 3D points within the spherical neighborhood of Bj 
with the support radius L; xh, yh and zh denote the coordinates of a 3D point in the LRF 
of Bj. We construct a bipartite graph whose two disjoint vertex sets consist of keypoints 
and biomarkers, respectively. The weight of each edge connecting keypoint and bi-
omarker is computed by (3). Then, we find from this graph the keypoint-biomarker 
matching with minimum weight sum by blossom algorithm [14]. Supposing that each 
Bj is matched with a model keypoint qj

*, the confidence score that Bj corresponds to qj
* 

can be calculated by  

  2
* *

1,2

1
exp ,

w
fj j f j f
f j

c





      
 

 q q B B   (4) 

where σ is set as 0.01 meters. It can be easily seen that the higher the value of cj, the 
more likely Bj is matched with qj

*. Accordingly, the head pose will be first computed 
from all keypoint-biomarker matches via least squares weighted by the confidence 
scores {cj} in (4), and then refined with facial point cloud and model points by ICP. 

2.4 Real-time Head Pose Tracking 

At subsequent instant k (k>0), the head pose will be determined by ICP algorithm with 
the pose predicted by SCKF as initial value. Then, the SCKF will provide the final 
maximum a posteriori estimate pk to head pose and predict the pose of the next time 
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instant (see the green box in Fig. 1). In our work, the SCKF is based on uniform velocity 
dynamic model, which assumes the acceleration of translation and rotation are noises 
with zero means and constant standard deviations. Let sk=[Ωk

T tk
T ωk

T vk
T]T be the state 

vector at instant k, where ωk
 and vk denote the angular and the translational velocities 

respectively, and Ωk
 and tk are the rotation vector and translation vector respectively. 

According to kinesics, we have the state model 
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where J(Ωk) is the left Jacobian matrix of SO(3) [15], and μk and δk represent the noise 
for the angular and the translational velocities respectively, and follow the Gaussian 
noise vectors with zero mean and variances of W2I3 and Q2I3 respectively, in which I3 
denotes the 3-order identity. The measurement model of the SCKF can then be ex-
pressed as follows: 

  6 6 ,k k k z I O s ε   (6) 

where I6 and O6 denote the 6-order identity and 6-order zero matrix respectively, and 
εk denotes the observation noise and is considered subject to a Gaussian distribution 
with zero mean and variance of V2I6. When k>0, zk is determined by the ICP. The pro-
cedures of the SCKF can be found in [16]. 

3 Experiment Results and Discussion 

We measure the performance of the proposed method by sufficient synthetic and real 
trials on a desktop with 4.2GHz Intel Core i7-12700, 12 cores, and 64GB RAM. All 
algorithms are implemented in MATLAB.  

3.1 Similarity Metric Evaluation 

This subsection tests the robustness of the similarity metric proposed in (3) to Gaussian 
noise, shot noise and mesh decimation. For this purpose, five scenes are synthesized 
from the angel model in Queen’s dataset [17] with a virtual depth sensor at different 
viewpoints. Therefore, the ground truth (GT) of the pose between each scene and model 
is known. Several local descriptors are adopted for comparison, including MVD [8], 
TOLDI [18], SHOT [19], LFSH [20], SI [21], LSHT [22] and TriLCI [23]. The param-
eters of all comparison methods are set as recommended. The performance of all meth-
ods are evaluated by the recall versus precision curve (RPC) and the area under RPC 
(AUCpr). The details of PRC and AUCpr can be found in [18]. In our similarity metric, 
the TPSF has two hyper-parameters - support radius L and the control point number N. 
The grid search shows that L=35 mesh resolutions (mr) and N=32 provide the best 
AUCpr (see Fig. 2 (a)).   
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Fig. 2. Performance of our similarity metric and all comparison descriptor methods. 

In the Gaussian noise test, we add the Gaussian noise with zero mean and the level 
gradually increasing from 0 mr to 0.5 mr to each scene. At each noise level, each scene 
is perturbed 20 times. Fig. 2 (b)-(e) plot the RPC and AUCpr of all methods at different 
noise levels. As seen, at each noise level, the precision of our metric declines gently 
from nearly 1 to about 0.90 as the recall rises, and almost always keep higher than that 
of all comparison methods. The AUCpr of our metric remains above 0.85 at all the 
noise levels and is noticeably larger than that of all the others. This trial manifests that 
our metric is almost not influenced by Gaussian noise and has satisfactory descriptive-
ness.  

To assess the robustness against shot noise, we randomly sample some points from 
each scene with the percentage (noise level) of 1%, 1.5% and 2% respectively. These 
sampled points are then displaced by 20mr along their normal directions. At each noise 
level, each scene is perturbed 20 times. The performance of all methods under shot 
noise are presented in Fig. 2 (f)-(h). As observed, our metric has the greatest AUCpr 
among all methods, which slightly decreases from 0.85 to 0.78 as the noise level in-
creases. The PRC of our metric is almost invariably higher than that of comparison 
methods. It is noteworthy that even at the noise level of 2%, the precision of our metric 
can still maintain above 0.9.  

In the decimation test, we downsample each scene to 1/2, 1/4, and 1/8 of the original 
mesh resolution. Fig. 2 (i)-(k) give the information about the PRC and AUCpr of all 
methods. As the degree of downsampling increases, the AUCpr of our metric sharply 
drops from 0.83 to 0.61 and the precision of our metric becomes increasingly sensitive 
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to recall value. This is expected since the scene points become increasingly less. None-
theless, our metric achieves the largest AUCpr and almost the highest PRC among all 
methods, which validates the outstanding robustness of our metric to mesh decimation.  

3.2 Head Registration 

We evaluate the initialization algorithm proposed in section 2.3 on the BIWI Head Pose 
dataset [24] in comparison with Lu’s method [6], Gsaxner’s method [5] and Guo’s 
method [8]. Both Lu’s method and Gsaxner’s method tackle marker-less head estima-
tion for CAN, and Guo’s method is based on MVD [8], which is the second best in the 
trial given in section 3.1. Furthermore, Guo’s method introduces 1-Point RANSAC to 
improve the robustness of feature matching. The BIWI Dataset is the most widely used 
for head pose estimation and tracking and the details can be found in [25]. It offers the 
RGBD images and the 3D facial model for each subject, which can be directly used as 
preoperative facial models required by our method. The registration performance is as-
sessed by relative rotation error (RRE), relative translation error (RTE), and average 
runtime (see [25] for details). To validate the effectiveness of the proposed biomarker-
keypoint matching algorithm, we replace this algorithm with 1-Point RANSAC for 
comparison. The accuracy and efficiency of all methods are listed in Table 1. Among 
all methods, our method is the most efficient (2.38s) and achieves the best performance 
with an RTE of 1.9 mm and RRE of 2.6°. Our similarity metric followed by 1-Point 
RANSAC is the second best in terms of pose errors and efficiency. It achieves pose 
accuracy close to that of our method but has greatly larger time-consumption than our 
method. This strongly verifies the descriptiveness of our metric and the robustness of 
the proposed initialization method against mismatching. 

Table 1. Registration errors and average runtime. 

Method RRE (degree) RTE (mm) Time (s) 

Lu’s method [6] 24.5 144.7 11.59 

Gsaxner’ method [5] 7.4 85.7 3.19 

Guo’s method [8] 15.8 8.0 192.78 

Our metric+1-point RANSAC 4.2 7.1 167.32 

Our initialization method 2.6 1.9 2.38 

Table 2. Tracking errors and average runtime. 

Method Pitch (degree) Yaw (degree) Roll (degree) RTE (mm) Time (s) 

POSEidon+ [9] 1.5 2.2 1.6 - 0.03 

PGCNN [10] 1.1 1.8 1.4 - 0.02 

Robust Model [11] 2.2 2.4 2.1 9.8 0.14 

Ours 0.8 1.2 0.4 2.3 0.06 
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3.3 Head Pose Tracking 

This subsection evaluates the performance of the proposed real-time head pose tracking 
algorithm on the BIWI dataset. Tracking performance is quantified by the average 
runtime, RTE, and the three Euler angle errors (pitch, yaw and roll) [9]. POSEidon+ 
[9], PGCNN [10] and Robust Model [11] are adopted for comparison. POSEidon+ and 
PGCNN are state-of-the-art head pose estimation methods based on convolutional neu-
ral networks. Robust Model deals with head pose tracking with particle swarm optimi-
zation. Table 2 demonstrates the performance of all methods. As seen, the proposed 
approach achieves the highest tracking accuracy, with the three Euler angle errors of 
approximately 0.08°, 0.12° and 0.04° respectively, and RTE of 2.3 mm, compared to 
all comparison methods. The runtime of our method is about 0.06 seconds/frame. Ac-
cordingly, although not the fastest, our method can satisfy the real-time requirement of 
CAN. In contrast, Robust Model suffers from high time-consumption, and POSEidon+ 
and PGCNN can only provide 3-DOF head pose, which cannot be used for CAN. 

 

Fig. 3. Real application tests for our system. 

3.4 Real Application 

This subsection will exploit two real application tests to validate the effectiveness of 
the proposed system for CAN. The system employs an Intel RealSense D435i camera, 
which has the resolution of 640×480 and the frequency of 30Hz. In the first application 
test, several participants sit in front of the camera, and the system tracks their head 
poses and visualizes their cerebral vessels in real time. Some examples are demon-
strated in the first two rows of Fig. 3, where the pink number denotes the frame index. 
As seen, our system can maintain stable head pose tracking even under significant head 
movement. In the second application test, our system simultaneously tracks the poses 
of the participant’s head and a marked TCD scanner in real time and visualizes the 
cerebral vessels and the ultrasound beam for TCD examination navigation. The video 
provided in the supplementary material records the whole process of TCD navigation. 
Some example frames of the video are shown in the bottom row in Fig. 3, where the 
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green line represents the ultrasound beam. This test manifests that our system can help 
the TCD operator localize the vessel quickly. 

4 Conclusion 

This paper presents a marker-less head pose tracking system for CAN. In the preoper-
ative stage, the system automatically constructs the 3D facial model of patient from the 
MRI data of patient’s head. During the online stage, the system first robustly registers 
the 3D facial model with patient's head via blossom algorithm, and then continuously 
tracks the 6-DOF head pose in real-time by ICP and SCKF. The estimated pose enables 
real-time visualization of cerebral vessels through MIPP for intuitive CAN guidance. 
Substantial trials validate the effectiveness of our system in both accuracy and effi-
ciency. While promising, the system has several limitations. First, this work assumes 
rigid facial surfaces during neurosurgery or TCD procedures, without consideration of 
facial deformation. Second, the impact of varying biomarker number needs further 
analysis. In our future work, we will focus on these limitations and evaluate the navi-
gation system in collaboration with clinicians. 
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