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Abstract. Deformable medical image registration is an essential task
in computer-assisted interventions. This problem is particularly relevant
to oncological treatments, where precise image alignment is necessary
for tracking tumor growth, assessing treatment response, and ensuring
accurate delivery of therapies. Recent AI methods can outperform tra-
ditional techniques in accuracy and speed, yet they often produce un-
reliable deformations that limit their clinical adoption. In this work, we
address this challenge and introduce a novel implicit registration frame-
work that can predict accurate and reliable deformations. Our insight
is to reformulate image registration as a signal reconstruction problem:
we learn a kernel function that can recover the dense displacement field
from sparse keypoint correspondences. We integrate our method in a
novel hierarchical architecture, and estimate the displacement field in
a coarse-to-fine manner. Our formulation also allows for efficient refine-
ment at test time, permitting clinicians to easily adjust registrations
when needed. We validate our method on challenging intra-patient tho-
racic and abdominal zero-shot registration tasks, using public as well as
internal datasets from the Innsbruck University Hospital. Our method
not only shows competitive accuracy to state-of-the-art approaches, but
also bridges the generalization gap between implicit and explicit registra-
tion techniques. In particular, our method generates deformations that
better preserve anatomical relationships and matches the performance
of specialized commercial systems, underscoring its potential for clinical
adoption.
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1 Introduction

Accurate and reliable image registration is an essential step in computer-assisted
interventions, with direct applications on intra-procedural navigation, treatment
monitoring and evaluation. The task consists of finding the optimal transforma-
tion that aligns the two input images. In particular in the abdominal and thoracic
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regions, deformable registration is needed to correctly model large nonlinear
deformations resulting from the complex behavior and interaction of soft tis-
sues [45]. Traditional image registration methods [2,23,32] can estimate accurate
deformations for each image pair, but often struggle to balance accuracy, com-
putational efficiency, and anatomical plausibility; modern techniques can lever-
age hardware acceleration (GPU) for faster inference [18, 36]. Recent advances
in artificial intelligence (AI) have shown promising results in addressing these
challenges, with learning-based methods achieving state-of-the-art performance
in terms of both speed and accuracy. Building on the frameworks described in
VoxelMorph [3] and SynthMorph [21], AI methods are trained to predict a ten-
sor ϕ ∈ RD×H×W ×3 representing the displacement field that spatially aligns the
two 3D inputs, namely the moving and fixed images, with D, H, W denoting the
spatial dimensions. Backpropagation of the gradients is achieved by warping the
image with ϕ using a Spatial Transformer Network layer [22]. Multi-stage incre-
mental prediction has been shown to increase the registration accuracy with min-
imal computational overhead [8, 30, 42, 43], achieving comparable performance
to pyramidal [33] and cascaded [47] architectures. Despite these improvements,
current AI registration methods struggle with unseen anatomical variations or
clinical scenarios not encountered during training [20]. Recent foundation mod-
els try to bridge this gap by pre-training on large-scale diverse datasets, but
they still need test-time refinement in difficult zero-shot cases (“Type 2” out-
of-distribution) [11, 39]. Implicit Neural Representations (INRs) have recently
emerged as a powerful paradigm, offering high-resolution, and memory-efficient
modeling of continuous spatial signals [28, 31, 37]. However, conventional INRs
are inherently designed to overfit individual input signals and lack the capac-
ity to generalize across diverse samples. For instance, in the context of medical
imaging, the method introduced in [46] can model the spatial transformation
between a pair of medical images, but requires retraining for each new pair, lim-
iting clinical deployment. Several strategies have been explored to address this
limitation, including hyper-networks [7, 14, 37], modulation of periodic activa-
tions [28], and conditioned multilayer perceptrons (MLP) [1]. Recently, the work
of [48] proposed to condition learned image features for improved generalization.
To our knowledge, this remains the only prior work addressing generalized INRs
for medical image registration, highlighting a critical research gap. Therefore, a
key question remains [6]: how can we mitigate AI generalization issues
to achieve reliable zero-shot registration? This is the focus of our work,
and to answer the question, we propose a fundamentally different approach that
casts deformable registration as a continuous signal reconstruction task. Rather
than fitting the dense displacement field directly from image intensities, we in-
troduce a novel implicit model conditioned on sparse, automatically extracted
keypoint correspondences. Our method leverages an implicit dual-stream atten-
tion mechanism to model the spatial and semantic dependencies of the neigh-
boring displacements, allowing to learn complex deformations in a data-driven
manner. Critically different from explicit sparse correspondence extrapolation
methods such as [17], our framework learns a continuous implicit representa-
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tion of the dense displacement field. Distinct from related implicit methods,
we condition the reconstruction of the displacement field on sparse cost-volume
optimal displacements, not just on image features. Furthermore, our approach
naturally supports interactive test-time refinement, enhancing its practicality for
real-world clinical applications. We visualize the proposed method in Figure 1.
In summary, the main contributions of this work are threefold: 1) We introduce
a novel implicit framework for medical image registration leveraging learnable
kernels. 2) We condition the representation on local keypoint correspondences. 3)
We evaluate our method and compare it with several state-of-the-art approaches
on zero-shot intra-patient registration tasks. In the following sections, we intro-
duce our method, followed by empirical results and ablation studies supporting
the design choices.

Fig. 1: In this work, we rephrase deformable image registration as signal recon-
struction. First, we obtain sparse correspondences between the input images us-
ing cost-volume optimization on multi-scale features learned with F . Then, we re-
construct the displacement field with a learnable kernel function w, conditioned
on the local displacements d(y) at locations in the neighborhood y ∈ N (x).

2 Method

In this work, we cast deformable medical image registration as a signal recon-
struction problem. Our goal is to reconstruct a high-dimensional signal ρ : R3 →
R3 from a sparse set of observations O = {pi, di}i∈N:1≤i≤m, where pi are spa-
tial coordinates ∈ R3, and di ∈ R3 denote the observed signal values. Under
this formulation, we evaluate ρ on the regular Cartesian grid to represent the
displacement field ϕ on the voxel domain.
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2.1 Learnable kernels for image registration

Our key insight is that natural signals, such as displacement fields, exhibit strong
local and global structure that can be encoded in a learnable basis representation.
We adopt a kernelised formulation and compute d(x) as

ρ(x) =
∑

y∈N (x)

w(x, y) · d(y), (1)

where N (x) represents the neighborhood of x, and the kernel w determines the
contribution of each neighbor to the final displacement at x. To construct N (x),
we include the nearest K = 30 keypoints from x and associated correspondences.
The signal observations can be obtained via point-to-point correspondences be-
tween the moving and fixed images, as described later on. While w is defined a
priori in traditional techniques, in our method it is parameterized with a neural
network. We design a dual-stream attention mechanism [41] to disentangle ge-
ometric and semantic information with two dedicated attention heads Hs, Hf ,
operating on the latent coordinate and feature space, respectively:

a(x, y) = Hs(Es(x), Es(y))) + Hf (Ef (xf ) + Ef (yf ))) + b(x, y), y ∈ N (x). (2)

a(x, y) encodes the attention score between two points in the image domain x, y,
and b(x, y) = 1

1+∥x−y∥2 is the spatial bias component. Es and Ef are the geometric
and semantic feature encoders respectively, parameterized with a three-layer
MLP with 128 hidden units and ReLU activations; overall our learnable kernel
module consists of ≈ 150k trainable parameters. We extract dense semantic
features from the inputs with a learnable encoder F , which are sampled at x, y
to obtain the feature vectors xf , yf respectively; F is parameterized with a multi-
scale UNet encoder [35]. To calculate w we apply the softmax operation on the
attention scores in the neighborhood, w(x, y) = ea(x,y)∑

y∈N (x)
ea(x,y) .

2.2 Conditioning

To improve consistency and generalization, we propose to condition the recon-
struction of the displacement field on the local neighborhood of displacements.
To do so, we first detect a set of salient points on the image, and then estimate the
optimal correspondences in the other image using a differentiable cost-volume
layer on the learned multi-scale features [13,19]; during training, the optimal cor-
respondences are identified within a 7 × 7 × 7 voxel patch around each keypoint,
whereas at inference this search window is expanded to 9 × 9 × 9 voxels. These
correspondences are the signal observations d(y), y ∈ N (x), used in the recon-
struction of the displacement field. In our experiments, we find that traditional
detectors such as Förstner [18] and SIFT [27], as well as deep-learning ones such
as DISK [40] and SuperPoint [12], provide a sufficient number of keypoints to
achieve competitive performance, with minimal computational overhead. When
using SIFT, DISK, and SuperPoint detectors we process each 2D slice in the in-
put volume separately and retain only the points with confidence greater than a
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pre-defined tolerance. During training, we limit the number of keypoints to 1024
by farthest point sampling, while at inference we allow maximum 3000 points.

Test-time Interactive Refinement. A unique feature of our method is the
support for efficient test-time interactive refinement. We leverage the implicit
kernelised representation and compute localized updates to w(x, u), where u ∈
N (x) and is a new point-to-point correspondence between images, without re-
quiring an additional full registration.

2.3 Training

Following related work, we predict the final displacement field incrementally with
a multi-scale pipeline [8, 30, 42]. We reconstruct the optimal dense deformation
field at each scale, and use this estimate to warp the features at the next scale,
iterating until full-resolution. In our experiments, we use five scales. We train
our method with usual registration loss functions, imposing the normalized cross-
correlation (NCC) loss to promote image similarity and the isotropic diffusion as
regularizer [3]. If available, we also warp the segmentation masks and impose the
Dice loss [5] on the warped and fixed segmentation masks. Similarly, if landmarks
are available, we include the Euclidean distance between the fixed and warped
landmarks in the loss function. We use the same weight for each loss function.

3 Experiments and Results

We compare our method with state-of-the-art registration approaches, including
six incremental multi-scale registration techniques (corrMLP [29], H-ViT [15],
ModeT [42], NICE-Trans [30], RDP [43], WiNet [8]), the implicit method AM
SIREN [48], and the recent foundation model uniGradICON [39]. To ensure a
fair comparison, we fine-tuned uniGradICON with 50 test-time iterations (≈ 1
minute). We implemented a multi-scale version of the “3l-512” AM SIREN ar-
chitecture, totaling 7.8m of trainable parameters. The remaining architectures
were configured to have 3.5 ± 0.3m of trainable parameters by adjusting the
number of feature channels. We train all the learning methods until convergence
on the validation set (for a maximum of 100 epochs), and test them using the
checkpoint with the best validation metrics; each training run never exceeds 7
hours. During training we adopt common data augmentation techniques such
as Gaussian noise and blurring. We set the same randomization seed in each
training run so that each model is trained on exactly the same data.

We use two challenging intra-patient registration datasets, namely the pub-
lic NLST data3 [10], and a large-scale dataset from the Innsbruck University
Hospital containing 96 colorectal cancer hepatic interventions. In the following
tables, we report the mean and standard deviation across measurements, as well
as the 5% and 95% confidence intervals in squared brackets [9]. Arrows indicate
3 https://www.cancerimagingarchive.net/collection/nlst

https://www.cancerimagingarchive.net/collection/nlst
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whether higher (↑) or lower values (↓) are better. ∗ represents statistically sig-
nificant differences with respect to our results, after Bonferroni correction.

NLST data. This dataset, featured in the MICCAI Learn2Reg 2023 chal-
lenge [20], is extensively used to benchmark intra-patient registration methods.
The registration task involves estimating lung deformations between inhale and
exhale CT scans, a challenging problem due to the presence of large non-linear
displacements. In our experiments, we observed that using a mean-squared error
(MSE) loss yielded superior results compared to using the NCC loss. To ensure
a fair comparison with memory-intensive methods, we resized the input volumes
to half of their original resolution (112 × 96 × 112), and trained all models at
this resolution; for the additional pre-processing steps we follow the challenge in-
structions [20]. We compare the methods on the salient target registration error
(TRE, measured in mm) using the provided ground-truth landmarks and on the
regularity of the deformations, in terms of the standard deviation of the loga-
rithm of the Jacobian determinant (SDlogJ). In order to evaluate robustness, we
also determine the 30th percentile of largest landmark distances (TRE30) [20].
The results are compiled in Table 1.

Table 1: Quantitative results on the Learn2Reg NLST dataset.
Method TRE (mm) ↓ TRE30 (mm) ↓ SDlogJ ↓

ours 1.72±0.43 [1.40, 2.04] 1.89±0.38 [1.60, 2.17] 0.02
AM SIREN [48] 3.51±1.06 [2.71, 4.31]∗ 4.11±1.23 [3.19, 5.04]∗ 0.08∗

corrMLP [29] 3.30±1.33 [2.29, 4.30]∗ 3.80±1.42 [2.73, 4.87]∗ 0.05∗

H-ViT [15] 3.77±1.39 [2.72, 4.82]∗ 4.45±1.57 [3.26, 5.63]∗ 0.05∗

ModeT [42] 2.33±0.76 [1.75, 2.90] 2.51±0.72 [1.97, 3.05] 0.06∗

NICE-Trans [30] 3.27±1.32 [2.28, 4.27]∗ 3.80±1.67 [2.54, 5.06]∗ 0.07∗

RDP [43] 2.42±1.04 [1.63, 3.20] 2.56±1.06 [1.77, 3.36] 0.05∗

uniGradICON [39] 1.77±0.29 [1.55, 1.98] 1.87±0.31 [1.63, 2.10] 0.04∗

WiNet [8] 3.60±1.31 [2.61, 4.59]∗ 4.17±1.33 [3.16, 5.17]∗ 0.03∗

Colorectal liver cancer data. This dataset includes 96 CT scans from differ-
ent patients before and immediately after radio-frequency ablation [4], acquired
in arterial and venous phase respectively. This minimally invasive intervention
induces highly non-linear deformations in the liver, primarily due to respiratory
motion and tissue shrinkage [26,45], as well as significant intensity changes near
the tumor region. These challenges make the dataset particularly valuable for
evaluating the robustness and accuracy of registration methods under complex,
real-world conditions. Ground-truth segmentation masks for liver, tumor, and
treatment area have been semi-automatically obtained, checked, and corrected
by two clinicians at the Innsbruck University Hospital. Pre-processing steps in-
volve resampling the volumes to the same voxel spacing (3.0 × 1.4 × 1.4 mm3),
cropping a region of [80 × 192 × 192] voxels around the liver mask obtained with
TotalSegmentator [44], masking the image intensities using the 5th and 95th
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percentiles, and normalizing them to [0, 1]. We used a three cross-fold training
scheme, with 48 cases for training, 16 for validation, and 32 for testing. We com-
pare with related work on the following two tasks: liver registration accuracy
and safety margin assessment (SMA). For the liver registration, we compute
the average symmetric surface distance (ASSD), and the 95th percentile of the
Hausdorff distance (HD95) on the liver mask, both measured in mm. To cal-
culate SMA, we measure the distance between the warped treatment area and
the pre-operative tumor, using a 5 mm margin as the threshold to determine
treatment success [24]: this is widely recognized as an independent predictor of
local disease progression [25]. We calculate the receiver operating characteristic
(ROC) curve for this classification task [34], and report the results in Table 2. In
the last row of the table, we show the results from a state-of-the-art commercial
software, specifically designed for this task [38]. For detailed visual results, we
refer to the supplementary material.

Table 2: Quantitative results on the dataset from the Innsbruck University Hos-
pital.

Method Liver ASSD (mm) ↓ Liver HD95 (mm) ↓ SMA (%) ↑
ours 1.10±0.96 [0.90, 1.29] 4.71±3.78 [3.94, 5.48] 70.59

AM SIREN [48] 0.99±0.90 [0.81, 1.17] 4.86±3.76 [4.10, 5.63] 52.94
corrMLP [29] 2.53±2.46 [2.03, 3.04]∗ 8.51±6.98 [7.09, 9.93]∗ 53.27

H-ViT [15] 1.63±1.24 [1.37, 1.88]∗ 6.20±4.48 [5.29, 7.11] 50.33
ModeT [42] 0.98±0.87 [0.80, 1.15] 4.77±3.72 [4.02, 5.53] 56.21

NICE-Trans [30] 1.26±1.13 [1.03, 1.49] 5.58±4.18 [4.73, 6.43] 59.15
RDP [43] 0.82±0.88 [0.64, 1.00] 4.13±3.45 [3.42, 4.83] 58.82

uniGradICON [39] 1.01±0.88 [0.84, 1.19] 4.29±3.15 [3.65, 4.93] 64.71
WiNet [8] 1.68±1.27 [1.42, 1.94]∗ 6.33±4.61 [5.39, 7.26] 50.65

Ablation-fit [38] - - 71.24

4 Discussion, Limitations, and Conclusion

The empirical results on the public NLST dataset demonstrate that our method
either outperforms or pars state-of-the-art registration accuracy on large de-
formation modeling, while generating smoother deformations. In the case of the
internal colorectal cancer dataset, while the liver surface is accurately aligned by
most approaches, safety margin assessment remains a significant challenge. No-
tably, ours is the only AI method matching the performance of specialized com-
mercial systems for this task, with dramatically reduced inference time (1.6±0.3
seconds including keypoint extraction, compared to over two minutes), under-
scoring its potential for clinical translation.

Ablation studies. To analyze the factors influencing the performance of our
method, we conduct ablation studies on the core architectural elements using the
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public NLST dataset for reproducibility, and summarize the results in Table 3.
Although not statistically significant, there is a clear performance drop when re-
moving each component. In particular, the proposed learnable interpolation of-
fers a key advantage in terms of deformation accuracy. Further, we observe that
keypoint detections from deep-learning methods (DISK [40], SuperPoint [12])
remain effective despite significant domain shift, and keypoint location outside
of relevant anatomical areas.

Limitations. We note that our current implementation allocates 17.8±1.4 GB
of GPU memory during training due to the dense voxel-wise sampling and cost-
volume computations. We are actively developing more efficient implementations
to enhance scalability, especially for resource-constrained clinical environments.
In particular, the method could be optimized further to have sub-second response
times, and register non-contrast CT scans.

Table 3: Ablation studies on the NLST data. ∗ represents statistically significant
differences with respect to our method with Förstner keypoints. We use the
following abbreviations: kpts. for keypoints, and extrap. for extrapolation.

Method TRE (mm) ↓ TRE30 (mm) ↓ SDlogJ ↓
ours 1.72±0.43 [1.40, 2.04] 1.89±0.38 [1.60, 2.17] 0.02

only Hs 2.00±0.54 [1.59, 2.40] 2.24±0.60 [1.79, 2.69] 0.01
only Hf 1.79±0.45 [1.45, 2.14] 1.98±0.41 [1.67, 2.29] 0.01

TPS extrap. 2.23±0.62 [1.76, 2.69] 2.53±0.67 [2.02, 3.04]∗ 0.02
DISK kpts. 1.75±0.35 [1.48, 2.01] 1.89±0.36 [1.62, 2.17] 0.02
SIFT kpts. 1.78±0.45 [1.43, 2.12] 1.95±0.52 [1.55, 2.34] 0.02∗

SuperPoint kpts. 2.15±0.64 [1.66, 2.63] 2.42±0.66 [1.92, 2.91] 0.02∗

Test-time behavior. We highlight the practicality of our approach by comput-
ing the standard deviation of the attention scores as a proxy for the “confidence”
of the displacements [16], and visualize it in Figure 2. Finally, we also examine the
value of interactive refinement by re-computing the displacements based on the
provided ground-truth landmarks: we achieve a TRE improvement of 5, 9, 13%
adding 10, 20, 30 uniformly randomly sampled landmarks, respectively.

Conclusion and Future Work. In summary, this work introduces a novel
implicit framework that achieves a unique balance of accuracy, reliability, and
clinical usability by conditioning the signal reconstruction on sparse keypoint
correspondences. Our approach not only mitigates generalization issues in ex-
isting AI-based registration methods but it also provides a robust and prac-
tical solution for real-world clinical applications, achieving performance com-
parable to specialized commercial systems. The code is available at https:
//git.uibk.ac.at/informatik/igs/open/msm. In the future, we will conduct
further evaluation on different anatomical areas and modalities.

https://git.uibk.ac.at/informatik/igs/open/msm
https://git.uibk.ac.at/informatik/igs/open/msm
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(a) Case 101 from the NLST data, landmarks TRE = 1.10 mm.

(b) Case 130 from the Innsbruck University Hospital, liver ASSD = 0.87 mm.

Fig. 2: Overlay of the prediction “confidence” on the warped volume, with de-
tected keypoints marked in red.
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