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Abstract. The deformable registration of images of different modalities,
essential in many medical imaging applications, remains challenging. The
main challenge is developing a robust measure for image overlap despite
the compared images capturing different aspects of the underlying tis-
sue. Here, we explore similarity metrics based on functional dependence
between intensity values of registered images. Although functional depen-
dence is too restrictive on the global scale, earlier work has shown com-
petitive performance in deformable registration when such measures are
applied over small enough contexts. We confirm this finding and further
develop the idea by modeling local functional dependence via the linear
basis function model with the basis functions learned jointly with the de-
formation. The measure can be implemented via convolutions, making it
efficient to compute on GPUs. We release the method as an easy-to-use
tool and show good performance on three datasets compared to well-
established baseline and earlier functional dependence-based methods.

Keywords: Deformable image registration - Multimodal similarity mea-
sure- Functional dependence

1 Introduction

The multimodal medical image registration aims to find a mapping between the
anatomical coordinates of images of different modalities. This is an important
prerequisite for the efficient utilization of complementary information provided
by different imaging modalities. In deformable registration, the mappings are not
limited to linear (affine). The problem is difficult and, while studied intensively
for a few decades, it remains an active topic of research.

The registration of distorted images is traditionally formulated as an op-
timization problem that involves a similarity term and a regularization term
[22]. In multimodal image registration, measuring similarity is particularly dif-
ficult due to the complex dependency between the registered images. Successful
methods include measuring similarity with mutual information (MI) [30124], a
measure of statistical dependence. Another method of multimodal (affine) reg-
istration is the correlation ratio (CR) [27], which measures the more restrictive
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Fig. 1. We measure multimodal similarity via residuals of locally fitted functions (over
sliding window). Each point on the right describes intensity value pair for voxels at
identical locations in the patches (only one slice of the 3D volumes is shown). The
points are weighted by the distance from the patch center. Blue curve: Learning
basis (globally) allows reasonably good fit with very few basis functions (number of
terms J = 4). Red curve: Polynomial functions (number of terms J = 6) struggle to
fit the high frequencies. (©)Copyright CERMEP - Imagerie du vivant, www.cermep.{r
and Hospices Civils de Lyon. All rights reserved.

functional dependence between intensity values, addressing the fact that mu-
tual information largely ignores the proximity of intensity values. In addition,
CR is efficient to compute. However, functional dependence is, in general, too
restrictive, especially for deformable registration.

Both MI and CR are global measures, making them sensitive to spatial
changes in statistical relationships between the image intensities, e.g. due to
non-uniform bias fields [24T2I25]. These measures have been defined in local
contexts [24UT7125] for which CR is particularly attractive because it is cheaper
to localize and functional dependency is often sufficient for small contexts. In this
work, we build on this and develop a well-working image registration based on
estimating local functional dependence with the following novel contributions.

— We model the intensity relationship with the linear basis function model.
The coefficients are fitted locally in closed form, and the basis functions are
learned jointly with the deformation. Earlier metrics measuring local func-
tional dependence (RaPTOR [25] and SRWCR [§]) estimate the intensity
relationship using Parzen windowing approximations of conditional expec-
tation (Eq. . RaPTOR uses a smooth variant of Eq. |2| whereas SRWCR
estimates full joint distribution for all subregions, which is very costly.

— We note that the measure can be implemented via a convolution operation,
allowing for an easy but efficient GPU implementation.

— We release the method as an easy-to-use tool, Locor (available at https://
github.com/honkamj/locor), and show good performance on three datasets.
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2 Notation

We view the images to be registered as mappings from physical coordinates to
intensity values I4 : R — R and Ip : R — R where n is the dimensionality
of the image. Trilinear interpolation is used to make the images continuous in
practice. We limit the mathematical analysis to single channel images for clarity.
The task is then to find the deformation d : R — R"™, describing the mapping
from the anatomical locations of the image I4 to the corresponding locations in
the image Ig. Only part of the domain R™ contains a valid image, but for clarity,
we do not explicitly mention this in the formulas. In general, any comparison
measures are applied over the overlapping valid region between the images.

When taking the expected value or variance of images, we interpret the im-
ages as random variables on the intensity values (generated by uniformly sam-
pling a coordinate), as is common in the literature [30/26].

3 Related work

The correlation ratio (CR) [27] is based on the assumption that there exists
a functional relationship between the intensity values of the registered images
f(Ia) = Ip for some f: R — R. The variance of f(I4) — Iz could then be used
as a similarity measure. Since f is unknown a priori, they propose to compute
the measure for optimal f (with which the variance is minimized), yielding

ming Var [f(1a) — Ip] :Var[E[IB|IA]—IB] (1)
Var [15] Var [I5]

Assuming that the intensity values are discrete, one can compute the measure
exactly as variance of Ig over the isosets (voxels of equal value) of the image I4.
Denoting isosets with intensity a as {2,, one obtains (here N := " _[£2,]):

D0 Dwen, (IB(x) - ﬁ Yiea, IB(j:))z
N Var [Ig] @

To obtain a differentiable measure, one can use soft windowing to define the
isosets (often called Parzen windowing). Alternatively, one could assume a spe-
cific parametric form for the function f, and in the appendix of [26] and later in
[28] Roche et al. explored the function assuming a polynomial form. It should also
be noted that the very popular cross-correlation (for intramodality registration)
can be derived by assuming an affine form for f [263].

The correlation ratio, applicable to rigid or affine multimodal registration,
was extended to deformable registration in RaPTOR [25] by computing the
measure over small randomly sampled patches. The idea was further explored in
SRWCR [8] by Gong et al. where patches are instead sampled over a regularly
spaced grid, and voxels within each patch are given less weight further they are
from the patch center. The method was implemented for a GPU to make it
computationally tractable. Both RaPTOR and SRWCR compute the local CR
measure by estimating conditional expectation with Parzen windowing.

1—CR(Ia,Ip) =

1—CR(I4,Ip) =
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4 Methods

Maximum likelihood has been used to derive global CR measures in [26]. Here,
we first extend the framework to local CR measures by modeling local neighbor-
hoods separately and subsequently aggregate the local losses into a global loss,
which we maximize to learn the unknown deformation and other parameters.

Consider a local neighborhood around a point, say » € R™, and assume that
intensity values of image I4 are modeled with a Gaussian distribution with a
mean function f,. that takes as input the intensity values of an (aligned) image
I, with noise variance increasing with the increasing distance from r:

La(z) ~ N(f:(Is(2)), o(z = r)or). (3)

In Eq. 3] ¢ : R™ — R is a function that increases with distance from the origin
(¢(0) = 1.0), and o, is the variance in r. As in |26], we assume that the errors in
the predicted intensity values of 14 at different locations x are independent given
I, and define a likelihood which we denote by p,(I4|Ig, 0, f). This likelihood
can be maximized to estimate the unknown f, and o,. Furthermore, the same
likelihood will be used to find the (local) deformation from I4 to Ip by finding
the deformed Ip with the highest likelihood (combined with a regularization
loss), but the deformation is suppressed in the notation for clarity.

The standard formula for the maximized log-likelihood for a Gaussian model
(maximization w.r.t. o), yields a local loss (similar to a weighted least squares):

(2)) — Ia(2))?
¢z —7)

1 (I
£ = maxlogpr (145,07, fr) = —5|X]log > Iz e

zeX

where X is the set of all considered spatial locations in the image.

To derive a global loss £, we normalize and average local L, over all r € X.
Although this no longer corresponds to a proper log-likelihood, this nevertheless
yields a meaningful global loss that is efficient to optimize. Different modeling
assumptions for f,. lead to different loss functions [26]. Not assuming a partic-
ular form for f leads to the estimation of conditional expectation (Eq. , used
by RaPTOR and SRWCR. Local cross-correlation (for intra-modality registra-
tion) can be derived from assuming affine form [26/3]. In the context of rigid
registration and global CR, a polynomial f has been proposed [28].

To find the optimal compromise in modeling assumptions (strict vs. loose), we
propose to model f as a linear combination of learned non-linear basis functions

J
fo,w(@) = 099Y) () (4)
j=1

where 0? ) € R are the local coefficients, and v, the global basis functions
parametrized by w. We define 1), as a small fully connected neural network, and
the parameters can be learned jointly with the deformation (via gradients) while
0, can be solved in closed form. In our experiments, relatively small number of
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terms J (e.g. 4) is enough for good results (saving compute), and having too
high J can be detrimental by allowing for poorly matching images with high
likelihood.

Maximizing for coefficients 6, is a standard weighted linear least squares
with input-output pairs (Ig(z), [4(x))zex and input transformation functions
zbff), yielding the input matrix ¥,, € RIX*7 (W‘“)i,j = Ef)(IB (x;)), the output
vector, y € RIXI 4, = I4(z;), and the diagonal weight matrix W, € RIXIXIXT,
(Wr)i = m The well-known solution is:

5,. = argmax L, = (WWTVVTLT/W)_1 WEWTy.
97"

As the final loss we average the formula maxy_ L, over all »r € X while
removing the additive and multiplicative constants:

g 3 (f5, . Us(2)) — La(x))?
IXI '

reX  zeX ¢z —r)

()

To use the loss to learn the deformation d one has to simply substitute Ip with
Ip od. We use average over the log-likelihood instead of likelihood followed by
local normalization (as with CR) since the log-form has the same scale invari-
ance property (with respect to the derivatives) and avoids computing the local
variance (see the ablation study in Section . Computing Eq. [5| naively is ex-
pensive. However, assuming that the considered locations X lie on a regular grid,
substituting fs, ., in Eq. E| into Eq. |§|, and rearranging terms yields a formulation
of the loss £ that can be calculated efficiently with convolutions:

2030 () (k) !
|X|Zlog[zz 0} (wj oIp)(Wy OIB)*¢)(T)

reX 7=1 k=1
3 (‘)( () 1) o 1
23200 () o tta s 1) 0+ (133 ) (0],
j=1 ¢ )

Similarly, the terms required to calculate the least squares solution 9 can be
expressed with convolutions as

@I, = (@8 o )l 0 Ig) « 1) (1)
@IWy), = (W8 oI)as 1) ().

NB. convolution, given any functions hy, hy : R® — R, is defined as the sum
(h1 % ho)(z) := erx hi(x)ha(x — 7).

(7)

4.1 Further details

Incorporating derivative information: The method allows efficient registra-
tion of multichannel data. We take advantage of this and augment input images
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with additional spatial derivative magnitude channel. This slightly improved the
results (see the ablation study in Section . A similar approach was used with
the polynomial f for the rigid global CR registration in [28].

Practical implementation: We incorporate the metric into a multi-resolution
(see, e.g., [A21]) registration pipeline with bidirectional formulation via scal-
ing and squaring [2]. We apply the similarity loss in both directions and take
the average. We use convolutions with stride 3 to save computational cost, but
we shift the sampling grid randomly over iterations, leading to equal weighting
for all spatial locations. We define the kernel é as the Gaussian kernel (radi-
ally symmetric and separable) and truncate it at 3 standard deviations. The
method is implemented in PyTorch and the optimization is performed with
gradients of loss w.r.t. the deformation d and the neural network parameters
¢ via automated differentation and Adam [I6] optimizer. For regularization of
the deformation we use the bending energy penalty [29]. In the experiments,
one registration took under 2 minutes on a modern GPU (V100), and under 1
minute with 2 GPUs. The evaluation of similarity and its derivative took (com-
bined time) for the highest resolution level approximately from 50ms to 500ms
(volume size differed a lot between the datasets). The method is available at
https://github.com/honkamj/locor.

5 Experiments

We conducted experiments on three datasets: two real and one semi-synthetic.
The code for all experiments is available at https://github.com/honkamj/
locor-experiments.

We evaluated abdomen MRI-CT registration on Learn2Reg 2021 [6JTI7/T8IT4]
data (CC BY 3.0 license) originally from The Cancer Imaging Archive (TCIA)
project, which contains 8 sets of MRI-CT image pairs with evaluation based on
anatomical segmentation masks of abdominal organs (dice score). We omitted
one subject (TCIA 0006) from the test set due to a very different appearance
compared to the other images, rendering our hyperparameter optimization setup
meaningless.

We used CERMEP-IDB-MRXFDG database [19] (CCO license) with 37 sub-
jects for evaluating head MRI-CT registration. Since the database contains no
labels for evaluation, we generated pseudo-CT images using a deep learning
image-to-image translation method designed for geometrically accurate cross-
modality synthesis [I5]. The mean absolute error (MAE) between the pseudo-CT
and registered CT images was used for evaluation. Based on our qualitative vi-
sual analysis, the metric corresponds well to the actual registration performance.

We generated a semi-synthetic dataset for head MRI T2-PD registration
from IX]E| dataset (CC BY-SA 3.0 license) by deforming PD images with random
synthetic deformations, consisting of rigid and elastic components; the latter

! http:/ /brain-development.org /ixi-dataset /
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Table 1. Results of the main experiment showing mean and standard deviation over
the test cases of each dataset. Ny/N refers to the ratio of test subjects for which
the method beats our method. corrField was not tested on Head MRI-CT since the
implementation could not handle images with different coordinate systems.

Abdomen (MRI-CT) Head (MRI-CT) Head (MRI T2-PD)
Method Dicet No/N MAE| N,/N TRE] No/N
NiftyReg (MIND) 0.72(0.31) 1/4 85.67(10.18) 0/34 0.51(0.08) 0/49
NiftyReg (NMI) 0.67(0.30) 0/4 72.07(18.59) 0/34 0.98(0.28)  0/49
ANTs (Mattes MI)  0.67(0.33) 0/4 80.07(13.12)  0/34 1.20(0.32)  0/49
corrField 0.79(0.11) 0/4 - - 176(1.72)  0/49
SRWCR! 0.84(0.09) 1/4 64.51(13.51)  1/34 0.30(0.06)  0/49
MINDSSC! 0.88(0.05) 2/4 67.28(20.20) 1/34 0.59(0.55)  0/49
Mt 0.85(0.04) 0/4 73.48(13.20) 0/34 2.04(6.61)  0/49
Locor polynom. (ours) 0.86(0.07) 0/4 63.03(13.16) 2/34 0.20(0.04) 1/49
Locor (ours) 0.88(0.04) 55.01(10.14)* 0.18(0.02)"

* Wilcoxon signed-rank test has p-value < 0.005 compared to all the baselines.
t Our reimplementation to a setup similar with our method.

were generated by scaling and squaring [2] from Gaussian smoothed white noise
[2]. The target registration error (TRE) in the voxels with respect to the known
deformation was used as an evaluation metric (with background masked out).
We used a randomly chosen subset of 52 subjects.

5.1 Hyperparameter optimization

For all the datasets, we separated 3 subjects into validation set, and for each
method (including ours), we ran 100 trials on each validation set to find the
best hyperparameters. We used a Gaussian process (GP) based optimizer and
to choose the final parameters, and fitted the same Gaussian process to the best
60% (poor performing parameters were omitted due to their high variance) of
the parameters and picked the parameters with the best posterior mean. The
procedure was done to avoid "lucky" parameter values with poor average per-
formance. The setup is fully documented by the codebase. All the results shown
in the paper are averages of 5 runs with the same optimized hyperparameters.

5.2 Comparison to earlier methods

As baselines we used well-establised methods NiftyReg [29/23I21120] (with both
MI and MIND [12]) and Advance Normalization Tools (ANTs) [4], as well as
corrfield[I1/10] which did well on Abdomen MRI-CT in Learn2reg 2021 [14]. We
implemented SRWCR [§] into identical multi-resolution setup as our method,
and for fair comparison, we did that also for mutual information via Parzen win-
dowing (implementation from [9]) and MINDSSC [1315] (later variant of MIND).
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Table 2. Results of the ablation study showing mean and standard deviation over the
validation cases of each dataset. Log vs. Normalized: Whether to use the logarithmic
form (Eq.[5) or to exponentiate and normalize the local log-likelihoods. Learned vs.
Polynom.: Whether to learn g or to use the fixed polynomial basis. Deriv.: Augment
input volumes with derivative magnitude channel.

Abdomen (MRI-CT) Head (MRI-CT) Head (MRI T2-PD)

Dice 1 MAE | TRE |
Log + Learned 0.902 (0.006)  56.0 (11.9)  0.187 (0.019)
Log + Learned + Deriv. 0.904 (0.006) 55.0 (11.9) 0.175 (0.012)
Log + Polynom. 0.895 (0.011)  61.0 (125)  0.193 (0.018)
Log + Polynom. + Deriv. 0.900 (0.007) 60.4 (12.2) 0.184 (0.015)
Normalized + Learned 0.900 (0.007) 56.2 (11.9) 0.214 (0.016)
Normalized + Learned + Deriv.  0.903 (0.006) 55.3 (11.7) 0.193 (0.011)

We also compared against our method replaced with the fixed polynomial basis
(Locor polynom.).

The results of the main experiment are given in Table 5] Our method clearly
outperformed the baselines in head MRI-CT and head T2-PD registration, while
in the abdominal MRI-CT dataset our method performed similarly to MINDSSC,
although the dataset is too small to draw statistically significant conclusions.

5.3 Ablation study

Before the main experiment, we performed an ablation study on the validation
set on different variants of the algorithm. The results are shown and the variants
are explained in Table |5.3] For polynomial basis we searched degrees < 5 and
< 3 for variants without and with derivative magnitude channel, respectively
(maximum of 6 and 10 terms, respectively).

In conclusion, using the learned g improved the results compared to using the
fixed polynomial basis. This was further confirmed by including the polynomial
basis variant (with derivative channel) in the main experiment on the test set
("Locor polynom." in Table . Including the derivative magnitude channel also
improved the results (we make no claims of statistical significance here). The
logarithmic variant performed slightly better than the normalized one, making
it a trivial choice due to cheaper computation.

6 Discussion

We provided further evidence that local functional dependence is a good simi-
larity measure for generic multimodal registration. Modeling the function para-
metrically as a linear combination of learned basis functions improved the per-
formance further, and the method outperformed all the baselines clearly on two
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out of three datasets. The main downside of the method is the additional com-
plexity due to the learning of the small neural network in conjunction, making
optimization dynamics more difficult to understand or predict.
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