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Abstract. High content imaging (HCI) plays a pivotal role in target-
directed drug discovery (TDD) by identifying compound activities across
tests (or assays) designed for specific therapeutic targets. However, real-
world assays often exhibit extreme label sparsity over large compound
libraries, making accurate predictions challenging. Recent studies follow-
ing multi-label learning (MLL) struggle in such scenarios when optimiz-
ing a single objective across multiple assays without assay-specific adap-
tations. To address this, we propose Mixture of Multi-Instance Learn-
ers (MoMIL), a multi-task learning (MTL) framework integrating hard-
parameter sharing with assay-specific Multiple Instance Learners (MILs),
enabling knowledge sharing and task-specific adaptations. Furthermore,
we introduce complementary enhancements: HCI-specific foundation mod-
els (FMs), an assay selection algorithm, and a label imputation method
to boost MoMIL’s learning capabilities. We benchmark MoMIL on two
extensive HCI datasets, achieving up to ∼6% and ∼8% improvement over
state-of-the-art MLL and MTL methods. Moreover, MoMIL shows strong
generalization to unseen assays, outperforming assay-specific single-task
learning (STL) methods in 11 out of 12 assays.

Keywords: High content imaging · Assay modeling · Multi-task learn-
ing · Multiple Instance Learning · Assay selection · Label imputation

1 Introduction

In TDD, assays are conducted to measure how different compounds affect specific
therapeutic targets, like proteins involved in a disease [14]. HCI is a technique
that observes how cells react to these compounds in a target-agnostic way [10].
The morphologies from HCI is then used to predict how compounds will inter-
act with specific targets, measured via respective assays [9,13,22]. By using HCI
to study many compounds across different assays, TDD aims to find important
interactions between compounds and targets. However, figuring out these inter-
actions accurately is difficult because of the complex biological effects involved.
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Recent advancements in AI/ML have significantly enhanced HCI-based drug
discovery [15–17,21,23] by automating morphological feature extraction, hit dis-
covery, and identifying mechanisms of action. To predict multiple assays for a
compound, recent efforts [9, 13, 22] used MLPs, CNNs, and MLL methods, pre-
trained on ImageNet [5]. However, these methods rely on multiple-concentration-
response data and multiple measurements per compound [13,22], which are often
unavailable at scale during early hit identification. Although single-concentration
data have been explored in [9], it assumes a high label density (∼48%). However,
real-world assays often exhibit extreme label sparsity, as low as 2-5% [22]. This
scarcity arises from cost, time and resource limitations of testing several com-
pounds over various assays. In addition, traditional MLL approaches, optimizing
a single objective across all labels, struggle under extreme sparsity, leading to
suboptimal performance. This approach does not adequately address diverse pat-
terns and distinct learning strategies necessary for individual assay. Therefore,
there is a pressing need to improve TDD by developing robust models that can
jointly analyze multiple assays, even when faced with extreme label sparsity.

In this paper, we present MoMIL, a MTL framework specifically designed
to overcome the challenges of extreme label sparsity in predicting multiple as-
says from single-concentration data. MoMIL employs a projection backbone with
hard-parameter sharing combined with assay-specific Multiple Instance Learning
(MIL) modules, effectively enabling knowledge sharing while tailoring models to
individual assay, and overcoming the issues of MLL setups. Further, our integra-
tion of attention mechanisms within the MILs allows to capture assay-specific
heterogeneity from HCI, improving upon standard feature aggregation methods
like mean or median pooling [4,7]. To enhance MTL performance, we implement
three key enhancements: (1) enhanced feature extraction through pre-training
FMs on HCI datasets, outperforming standard ImageNet-based models [16];
(2) an assay selection algorithm that identifies relevant auxiliary assays to
streamline knowledge transfer in MTL while minimizing noise, redundancy, and
model complexity; and (3) an adaptive assay-wise label imputation method
that boosts model reliability by providing additional high-confidence signals.

We rigorously benchmark MoMIL framework on two extensive HCI datasets
from Cell Painting [11] using U2OS and iPSC-derived neurons (iNeurons), focus-
ing on two distinct sets of six assays for TDD. These datasets include an order
of magnitude more compounds than those previously studied [7, 9, 13], allow-
ing for comprehensive evaluation across multiple experimental batches. MoMIL
achieves notable average improvements of 9.7%, 6.1%, and 8.1% compared
to traditional [15], state-of-the-art MLL [9], and adapted MTL [26] methods, re-
spectively. Additionally, our results highlight MoMIL’s robust generalization
capabilities, as it outperforms assay-specific STL methods in 11 out of 12 unseen
assays, demonstrating its potential to enhance real-world assay modeling.
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Fig. 1: Overview of MoMIL framework. HCI input (a) is fed to multi-task MoMIL
model (b) to predict binary activities for the primary assays. (c) and (d) are the
assay selection and label imputation algorithms that boost knowledge sharing in
MoMIL by selecting relevant secondary assays and augmenting reliable activities.

2 Method

This section presents the MoMIL framework, as shown in Fig.1, which promotes
effective knowledge transfer across mixture of MILs for predicting multiple assays
in HCI via, (1) MoMIL architecture; (2) an assay selection algorithm based on
biological and assay relevance; and (3) an adaptive label imputation algorithm.

2.1 MoMIL architecture

Let dataset D consists of compounds C and wells W. Let c ∈ C perturbs a set of
wells, also called replicates, Wc : {wci }. The goal is to use Wc to predict binary
activities Yct for c across t ∈ T assays. To note, T includes T P primary and T S

secondary assays. We aim to maximize the prediction of T P by using relevant
knowledge from T S . MoMIL addresses the goal as a MTL problem (Fig.1(a))
and predicts ycit,∀t ∈ T for wci . Final Yct is derived as the mean of activities {ycit}
across all replicates {wci }. Formally, MoMIL includes: a feature extractor Fω, a
shared projector Fϕ, and a set of assay-specific heads FΨ : {Fψt

},∀t.
Feature extractor Fω: This module featurizes wci into wc

i . wci is imaged
as a set of field-of-views (FoVs) {vcij}. First, vcij is divided into instances of
shape Rp×q×ch, with p, q as the spatial dimensions and ch as the image channels.
Next, Fω encodes each instance into RD, followed by batch correction. Fω is a
Vision Transformer (ViT) pretrained using self-supervised learning and instance
images from an exclusive dataset D∗, s.t., D∩D∗ = ∅. Note, D∗ and D contain
compounds with scaffold-level overlap, as extreme annotation sparsity prevents
feasible scaffold-level splitting while ensuring adequate class-wise annotations
across assays. Finally, wc

i : Fω(wci ) ∈ RNc
i ×D, where N c

i is the total number of
instances in wci across all {vcij} FoVs.

Projection backbone Fϕ: This module extracts generalized representations
of compound-assay interactions through hard-parameter sharing, i.e., sharing ϕ
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across T . Hard-parameter sharing in MoMIL facilitates three benefits: (1) en-
ables to learn robust assay-agnostic patterns by leveraging the biological relat-
edness among the assay-corresponding targets, detailed in Sec.2.2; (2) stronger
regularization, which is crucial for reducing the risk of overfitting under sparse
labels; (3) compared to soft-parameter sharing approaches, it incurs less learn-
ing complexity, computational cost, and risk of overfitting with limited labels.
Formally, Fϕ(wc

i ) : RN
c
i ×D → RNc

i ×d, where Fϕ is an MLP and d << D.
Assay-specific FΨ : This module includes assay-specific heads {Fψt

},∀t ∈ T
to optimize individual compound-assay interaction. Fψt(Fϕ(wc

i )) : RN
c
i ×d → R1

optimally aggregates the encoded instance features in wci to predict ycit. Fψt is
a MIL, that learns permutation-invariant instance-level attention weights, uses
the attention-scaled instance features to derive a well representation, and maps
the well representation to the assay label. Formally, Fψt

is defined as,

Fψt

(
Fϕ(wc

i )
)
= σ

( Nc
i∑

i=1

Fαt

{
Fβt

(
Fγt(Fϕ(wc

i ))
)
×Fγt(Fϕ(wc

i ))
})

where, Fγt ,Fβt
, and Fαt

are MLP projector, attention module with softmax
activation, and MLP classifier, respectively, and σ is the sigmoid activation.

Optimization objective: Fϕ and FΨ are trained in an end-to-end manner
by optimizing well-level multi-task binary cross-entropy loss, given as,

L = −
|C|∑
c=1

|W|∑
i=1

∑
t∈T

ycit × log
(
Fψt

(
Fϕ(wc

i )
))

+ (1− ycit)× log
(
1−Fψt

(
Fϕ(wc

i )
))

2.2 Assay selection algorithm

To enhance the prediction of T P leveraging knowledge from T S , we propose a
selection algorithm that identifies a subset T S∗⊂ T S (Fig. 1(c)). It minimizes
negative knowledge transfer from irrelevant assays while improving represen-
tation learning, model complexity, generalization, and addressing label scarcity.
Assays are prioritized based on: (1) Biological similarity: assays from T S shar-
ing pathways or interactions with T P to provide relevant biological knowledge,
(2) Assay performance: assays with high uni-assay performance to provide
high-quality features, (3) Assay influence: assays positively influencing T P

performance. These criteria are applied hierarchically for computation efficiency.
Biological similarity between two assays tp ∈ T P and ts ∈ T S is measured

by the association between the corresponding targets gp ∈ GP and gs ∈ GS . The
association between gp and gs is derived from STRING [24] by incorporating
phylogenetic co-occurrence, homology co-expression, experimentally determined
interactions, and text mining. The selected assays ∀tp form T S1 ⊂ T S .

Next, assay performances are measured by training individual MIL models
∀t ∈ T S1

. Specifically, we use the Fω and Fψt from MoMIL. We exclude Fϕ and
use Fγt inside Fψt

to project wc
i . A subset T S2 ⊂ T S1

is selected by applying a
threshold thperf on the uni-assay validation-set performances.
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Influence of an assay t ∈ T S2

on tp ∈ T P is assessed via the transfer learning
performance of uni-assay Fψt

on tp. First, we use Fω and the trained Fψt
from

above to infer the well embeddings for tp’s train and validation sets. Then we
train a Logistic Regression model to compute the influence score as the predictive
performance on the validation set. Influence scores are computed for all the
associated assays in T S2

on tp, and assays exceeding a threshold (thinf% of tp’s
self-influence) are selected. T S∗

is the collection of the influential assays ∀tp.
Our algorithm is flexible and scalable to large sets of secondary assays, com-

putationally efficient, and facilitates interpretability in selection. Additionally,
compared to reinforcement learning [25,27] and meta-learning methods [8], it is
more label-efficient, less prone to overfitting, and simpler to implement.

2.3 Adaptive label imputation algorithm

Given the extreme label sparsity, we propose a conformal-based multi-label im-
putation algorithm to transfer knowledge across assay labels for T ∗ : T P ∪T S∗

.
We leverage conformal prediction [1] to estimate empirical confidence thresholds
("conformals") on the validation set, and apply them on the train set to effec-
tively expand training labels. First, we train the initial MoMIL model, compute
probabilities Pval

t ,∀t ∈ T ∗ on the validation set, and identify correctly classified
wells Wval

t . Next, for each assay t ∈ T ∗, we determine labeling thresholds thpos
t

and thneg
t as the pth and (1 − p)th percentiles on Pval

t over Wval
t . Unlabeled

training wells with probabilities exceeding thpos
t or below thneg

t are assigned
positive and negative labels, respectively. To prevent T S∗

from dominating T P ,
we enforce stricter thresholds as the (p+ α)th and (1− p− α)th percentiles for
T S∗

. The imputed labels are then incorporated into subsequent MoMIL training
iterations, iteratively refining model predictions through self-training.

The algorithm offers a statistically grounded method for imputing labels,
ensuring confident label assignment and minimizing noise propagation. Further,
the assay-specific adaptive thresholds promote balanced learning across assays.

3 Experiments

Datasets: We evaluated the MoMIL framework on two large in-house datasets
acquired using Cell Painting on U2OS and iNeuron cell lines at 10µM and 20µM
concentrations, respectively, and 24-hour incubation. Different cell components
were labeled using fluorescent dyes and acquired 16-bit 5-channel fluorescence
images with a Yokogawa CellVoyager 8000 confocal HCI reader at 20× magnifi-
cation [12]. Both datasets were split at compound-level to define D∗ for training
FMs and D for evaluating MoMIL, presented in Tab.1. Both U2OS and iNeuron
datasets contain over an order of magnitude more compounds for assay predic-
tion compared to recent studies [7,9,13], enabling robust analysis. The datasets
also contain multiple experimental batches, enabling robust assessment of batch
variations in HCI and ensuring reliable, reproducible assay modeling [2].
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Dataset Usage #compounds #batches #plates #wells #FoVs #assays

U2OS FM train 69,019 338 505 123,907 495,531 -
iNeuron FM train 73,101 48 308 95,908 862,757 -

U2OS MoMIL eval 41,843 314 477 84,030 336,075 200
iNeuron MoMIL eval 42,808 48 627 61,239 550,907 200

Table 1: HCI dataset statistics for pre-training FMs and evaluating MoMIL.

FM training: U2OS and iNeuron FoVs of sizes 970×970 and 1938×1938
were resized to 960×960, channel-wise intensity clipped at < 0.01 and > 99.9
percentiles, and min-max normalized. Then, we trained ViT-B/16 [6] model with
DINOv2 [3] and DINO [20] for U2OS and iNeuron, respectively. Empirically, we
observed inferior representation quality with DINOv2 for iNeuron, likely due to
the inadequacy in reconstructing fine neurite structures. The FMs were trained
for 400 epochs with 480×480 global and 128×128 local crop sizes. For effective
knowledge distillation, crops were selected from high-intensity nuclei areas, and
augmented using flips, rotations, blur and color jitter. For inference, FoVs were
divided into 480×480 instances with stride 240×240, featurized by the FMs, and
plate-wise batch corrected using robust z-scoring over DMSO statistics.

MoMIL evaluation: D was split into 5-folds at compound-level based on
chemical similarities [12] to evaluate model generalization to compounds unseen
during training. Compounds-to-assays label matrix had a sparse fill rate of 4.3%
in U2OS and 4.2% in iNeuron, with 18.3% and 17.1% for T P. Assay labels were
assigned to well-replicates for model training. Fψt includes DSMIL [18] following
its success in [7]. Model hyperparameters include, Fϕ hidden-dim {64, 128}, Fψt

hidden-dim {32, 64, 128} with 0.5 dropout and ReLU. MoMIL was trained for
100 epochs with a warm-up of 20 epochs, AdamW optimizer with learning rates
{1e−4, 5e−5, 1e−5} & 5e−4 weight decay, cosine annealing, & early-stopping with
patience of 10 epochs. thperf, thinf, p and α were set to 70%, 0.9, 90% and 5%.
Well-level mean ROC-AUC over T P on the val-set was used for model selection.
We followed a 3-1-1 train-val-test strategy by permuting the test-set over the
5-folds. Finally, the well predictions over T P on the test-sets were combined and
averaged across well-replicates to derive compound-level assay estimates.

Baselines: We benchmarked MoMIL against four relevant baselines selected
per recent studies and their scalability to large number of assays. The baselines
were optimized similarly to MoMIL in the evaluation setup.
•Acapella → MLP [12]: The most widely used method in HCI [21]. Cells were
segmented, featurized by Acapella (commercial version of CellProfiler [19]), and
mean-pooled over the well to get well features, and followed by MLP classifiers.
• FM → Mean → MLP [15]: Instance features per-FoV were extracted using
a FM, mean-pooled per well, and followed by MLP classifiers.
• FM → Multi-label-MIL [9]: We adapted the original MLL method by replac-
ing transfer learning on ResNet50 with FM → MIL to ensure a fair comparison.
The MIL classifier was adapted for multi-label predictions and optimized per [9].
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Method |T | tU1 tU2 tU3 tU4 tU5 tU6 Average

U
2O

S
S
T

L Acapella → MLP [12] 1 60.8 62.3 62.7 61.2 70.2 65.8 63.8
FM → Mean → MLP [15] 1 61.7 61.5 68.6 62.6 71.0 67.1 65.4

MoMIL 1 65.4 62.6 65.5 67.3 74.0 71.6 67.7
M

T
L

Acapella → MLP [12] 6 64.0 61.1 59.9 59.7 73.7 69.7 64.7
FM → Mean → MLP [15] 6 61.5 58.8 62.0 67.0 74.0 71.4 65.8
FM → Multi-label-MIL [9] 6 68.1 66.8 64.8 71.1 71.2 71.8 68.9

MoMIL 6 65.8 65.1 67.5 69.8 72.2 70.6 68.5
FM → MIL + AMTL [26] 200 65.2 61.4 63.0 70.8 75.2 71.3 67.6
FM → Multi-label-MIL [9] 200 67.8 66.3 66.2 71.7 74.0 72.2 69.7

MoMIL 200 67.6 65.8 69.0 72.7 77.2 73.4 70.9
MoMIL + AS (bio. sim.) 78 68.7 67.2 69.7 72.0 77.8 74.3 71.6

MoMIL + AS (assay perf.) 53 67.9 66.8 69.4 71.4 76.0 74.4 71.0
MoMIL + AS 28 67.7 67.4 71.7 76.3 78.0 75.2 72.7

MoMIL + AS + LI 28 68.3† 69.1∗ 74.6∗ 76.4∗ 77.4† 75.7∗ 73.6

Method |T | tN1 tN2 tN3 tN4 tN5 tN6 Average

iN
eu

ro
n

S
T

L Acapella → MLP [12] 1 71.7 59.5 62.5 69.3 57.3 67.9 64.7
FM → Mean → MLP [15] 1 69.1 63.2 54.4 69.9 62.9 68.4 64.6

MoMIL 1 71.4 65.8 58.2 71.7 64.6 68.3 66.7

M
T

L

Acapella → MLP [12] 6 69.7 61.5 58.5 67.8 64.0 69.1 65.1
FM → Mean → MLP [15] 6 71.4 64.5 58.2 69.4 61.7 68.1 65.6
FM → Multi-label-MIL [9] 6 66.4 63.8 59.9 66.4 56.5 68.6 63.6

MoMIL 6 67.1 64.6 60.3 73.3 65.7 68.1 66.5
FM → MIL + AMTL [26] 200 68.9 64.2 58.8 70.8 63.1 69.1 65.8
FM → Multi-label-MIL [9] 200 64.3 66.0 60.1 71.7 63.6 70.7 66.1

MoMIL 200 70.8 67.7 60.8 71.9 64.6 71.7 67.9
MoMIL + AS (bio. sim.) 89 70.1 65.7 62.5 72.6 64.5 73.0 68.1

MoMIL + AS (assay perf.) 52 71.2 66.2 62.3 72.7 62.2 71.7 67.8
MoMIL + AS 32 72.1 67.4 62.8 74.6 65.9 72.5 69.2

MoMIL + AS + LI 32 71.8∗ 69.2† 68.2† 75.6‡ 65.5† 72.9∗ 70.5

Table 2: Benchmarking average and per-assay AUC of STL and MTL across
U2OS and iNeuron. AS: assay selection. LI: label imputation. Our framework &
its ablations are in bold and underline. 1st & 2nd best AUCs in yellow and blue.
∗, †, ‡ denote p-values < 0.001, < 0.05 & < 0.1 from a paired one-sided bootstrap
test between MoMIL + AS + LI and FM → Multi-label-MIL at assay-level.

• FM → MIL + AMTL [26]: The method optimized achievement-based multi-
task (AMTL) loss to modulate training speed, where achievement per-assay was
defined as the ratio of current to STL ROC-AUC, and multi-assay loss was
defined as the weighted geometric mean of individual assay losses.

4 Results and Discussions

Average AUC over T P and per-assay AUC for MoMIL and competing baselines
are presented in Tab. 2, across STL and MTL setups on both U2OS and iNeuron.

MoMIL consistently outperformed mean-pooling baselines, confirming MIL’s
ability to better capture instance-level variations. Also, FM features consistently
outperformed Acapella features. On average, MoMIL achieved 3.4% higher AUC



8 Pati, P. et al.

T P T P
rel

5-shot (Lin. Prob.) 10-shot (Lin. Prob.) All (Lin. Prob.) All (MIL)
STL MTL STL MTL STL MTL STL*

tU1 tU1-1 65.3±4.4 69.6±4.3 66.8±4.4 70.3±2.6 66.9 71.0 69.1

tU2
tU2-1 53.2±4.4 57.0±4.0 54.6±2.8 58.5±5.6 55.1 59.6 56.8
tU2-2 58.3±8.4 60.2±6.8 62.8±3.3 63.8±4.7 75.5 75.8 74.5
tU2-3 61.6±4.8 69.4±2.2 64.6±5.0 70.8±1.9 67.6 71.7 68.2
tU2-4 59.1±6.0 68.2±6.8 56.9±8.2 77.3±7.2 76.1 84.2 80.5
tU2-5 63.1±7.0 67.9±4.5 64.2±3.1 68.3±4.1 66.7 71.2 67.4
tU2-6 53.6±5.5 53.9±5.3 55.7±5.7 57.9±4.6 59.0 59.2 63.2

tU3
tU3-1 52.2±5.3 61.9±3.8 52.9±2.4 62.6±3.4 56.0 64.3 60.4
tU3-2 52.1±3.5 59.4±3.7 53.6±4.0 61.8±2.1 59.1 62.7 57.5

tU4
tU4-1 65.3±5.5 72.6±5.7 68.0±4.7 73.1±2.6 70.1 72.8 64.9
tU4-2 60.9±7.5 69.2±4.5 61.9±6.3 73.8±3.5 67.3 76.0 59.1

tU5 tU5-1 88.2±2.0 93.5±0.7 88.6±1.6 93.8±0.7 90.1 94.8 93.3
tU5-2 77.2±1.7 83.4±1.2 78.1±1.4 83.7±0.6 81.3 84.4 84.1

tU6
tU6-1 61.0±3.7 65.6±2.9 62.3±2.7 66.0±4.0 63.7 68.9 66.2
tU6-2 65.8±3.1 73.9±1.6 67.3±3.7 74.4±2.9 73.2 78.3 74.9

Table 3: Few-shot generalizability assessment of pre-trained STL & MTL models
on primary assays to unseen U2OS assays. AUC surpassing STL* are in yellow.

than FM → Mean → MLP and 4.6% higher than Acapella → MLP in STL, with
similar gains of 2.8% and 4.1%, respectively, in MTL. In comparing STL and
MTL MoMILs, MTL with |T | = 6 performed ≥ STL, while including secondary
assays (|T | = 200) significantly improved overall AUC by 3.3%. While auxil-
iary assays offer benefits, simply including more assays can complicate learning,
leading to conflicting gradients and convergence issues.

We observe that MoMIL consistently outperformed the AMTL and MLL
baselines by overall AUC of 4.1% and 2.2%, respectively. The under-performance
of AMTL and MLL can be attributed to the complexity of MTL and weaker
knowledge sharing, respectively. Assay selection (AS) and label imputation (LI)
further enhanced MoMIL. AS identified 22/194 and 26/194 relevant assays for
U2OS and iNeuron, respectively, and improved MoMIL(|T | = 200) by 2.2%. AS
outperformed the standalone biological-similarity and assay-performance based
selection by 1.6% and 2.3% in overall AUC. LI produced overall gains of 0.8%
and 1.6% in STL and MTL MoMILs, indicating its efficacy. LI performed better
in MTL, with a robust classifier better supporting the imputation. In summary,
MoMIL + AS + LI resulted in the best performance, achieving overall gains of
11.0%, 9.7%, 8.0%, and 6.1% over Acapella→MLP, FM→Mean→MLP, FM →
MIL + AMTL, and FM → Multi-label-MIL(|T | = 200), respectively.

We evaluated the generalizability of MoMIL(STL) and MoMIL+AS+LI (MTL)
to unseen assays in U2OS, Tab. 3. For each t ∈ T P , we selected unseen T P

relt
sharing the same target but different assay protocols, and inferred their well
features using Fψt . Next, we performed linear probing via Logistic Regression
for different few-shot setups ∀t′ ∈ T P

relt . 5-, 10-, and All-shot refer to using 5, 10,
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and all positive and negative compounds per-fold, respectively. We compared
the compound-level AUC against MoMIL (STL) trained specifically for t

′
, de-

noted as STL*. Results show that MTL consistently generalizes better than STL.
MTL outperformed STL* in 8/12 assays for 5- and 10-shot, and 11/12 assays for
All-shot. These highlight the practicality of our framework for real-world assay
modeling, achieving high performance even with limited assay activity data.

5 Conclusion

In summary, this paper presents MoMIL, a multi-task learning framework that
addresses the challenges of predicting multiple assays in TDD under extreme
label sparsity. By integrating assay-specific MIL heads, pre-trained FMs on HCI
data, the assay selection and label imputation algorithms, MoMIL outperforms
state-of-the-art MLL- and MTL-based compound activity modeling methods.
On top of MoMIL’s success, assay-specific adaptations can be further optimized.
Future work will explore advanced assay selection strategies, such as algorithm-
based selection of relevant assays, and refined imputation techniques to further
enhance model robustness and generalization in drug discovery applications.
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