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Abstract. In medical image segmentation, manual annotation is an ex-
ceptionally costly process, highlighting the critical need for selecting the
most valuable samples for labeling. Active learning provides an effective
solution for selecting informative samples, however, they faces the chal-
lenge of cold start, where the initial training samples are randomly cho-
sen, potentially leading to suboptimal model performance. In this study,
we present a novel cold start active learning framework based on Seg-
ment Anything Model (SAM), which leverages the zero-shot capabilities
of SAM on downstream datasets to address the cold start issue effectively.
Concretely, we employ a multiple augmentation strategy to estimate the
uncertainty map for each case, then calculate patch-level uncertainty
corresponding to the patch-level features generated from SAM’s image
encoder. Then we propose a Patch-based Global Distinct Representation
(PGDR) strategy that integrates patch-level uncertainty and image fea-
tures into a unified image-level representation. To select the samples with
representative and diverse information, we propose a Greedy Selection
with Cluster and Uncertainty (GSCU) strategy, which effectively com-
bines the image-level features and uncertainty to prioritize samples for
manual annotation. Experiments on prostate and left atrium segmenta-
tion datasets demonstrate that our framework outperforms five state-of-
the-art methods as well as random selection in various selection ratios.
For both datasets, our method achieves comparable performance to that
of the fully-supervised method with only 10% and 1.5% annotation bur-
den. Code is available at https://github.com /Hilab-git/SUGFW.git
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1 Introduction

Deep learning has achieved remarkable advancements on medical image segmen-
tation when trained with a large set of annotated images [I0I19]. However, the
manual annotation for medical image is labor-intensive and time-consuming.


https://github.com/Hilab-git/SUGFW.git

2 X. Ma et al.

Active learning [2I2002T|28] offers a solution by selecting the most informative
samples for model training, which substantially reduces the annotation costs.

Active learning aims to select samples that are representative of the entire
sample distribution while maintaining diversity, which ensures that the chosen
samples comprehensively capture the underlying data structure and variability.
Traditionally, researchers have employed pre-trained models to extract image
features [15], followed by the application of clustering strategies to partition the
semantic characteristics of the training set samples [7I89]. This strategy often
leads to misjudgments due to its over-reliance on clustering algorithms, which
may introduce biases or inaccuracies in sample selection. In recent years, several
studies have leveraged the powerful learning capabilities of neural networks to
enhance the performance of active learning, such as simulating the distribution of
the sample space through trainable parameters [23]. However, these frameworks
are confronted with the cold start issue, where the initial round of selection relies
on random sampling due to the fact that randomly initialized models are unable
to offer meaningful information. Cold start issue can adversely affect the quality
of subsequent sample selection and hinder the overall performance of the active
learning pipeline. Currently, several methods have been employed to address the
cold start issue [13], such as self-supervised training initialization [II25)27], di-
versity sampling [418] and uncertainty estimation [16]. However, the objective
of self-supervised learning may not align well with the downstream task, re-
sulting in learned feature representations that offer limited assistance. Diversity
sampling methods struggle to accurately capture the true diversity of the data
distribution. Uncertainty estimation methods also face challenges for providing
well-calibrated uncertainty when no labeled samples are provided in the cold
start phase, leading to inaccurate results.

In recent years, with the advancement of foundation models, the Segment
Anything Model (SAM) [I1] has achieved state-of-the-art performance on numer-
ous downstream datasets [3I5I4]. It generates segmentation masks by leveraging
positional or mask-based prompts. The model is capable of producing highly ac-
curate and effective segmentation masks as long as the quality of these prompts
is guaranteed. Nevertheless, the generation of high-quality prompt information
still necessitates human intervention to ensure precision and relevance. Notably,
SAM’s [IT] “everything mode” can autonomously generate prompt information,
enabling the segmentation of all target regions within a given sample. This pow-
erful zero-shot capability offers a promising solution to address the cold start
issue in active learning.

In this paper, we propose a novel cold start active learning method that lever-
ages the zero-shot capabilities of SAM. The contribution is three-fold. Firstly,
we propose a novel SAM-based Uncertainty-guided Feature Weighting (SUGFW)
framework that combines feature representation and predictions of SAM to select
uncertain and representative samples for labeling. By calculating the differences
among masks generated by SAM with multiple augmentations, we obtain patch-
level uncertainty for the images. Meanwhile, patch-level features are extracted
using SAM’s image encoder. Secondly, to enhance the performance of selection,
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Fig. 1. Overview of our proposed SUGFW framework. Firstly, the “everything mode”
of SAM is applied to multiple augmented versions of an image for prediction, followed
by uncertainty estimation and feature extraction. Subsequently, the PGDR strategy is
employed to generate distinct representations and estimate global uncertainty. Finally,
the GSCU strategy is utilized to select samples that are both uncertain and represen-
tative to train a segmentation network.

we propose a Patch-based Global Distinct Representation (PGDR) strategy to
obtain distinctive feature and global uncertainty of the images. These patch-level
features are weighted according to their corresponding patch-level uncertainty,
resulting in image-level features, which amplify the characteristics of uncertain
regions and effectively capture the distinctions between images. Finally, to en-
sure that the selected samples are both representative and diverse, we propose
a Greedy Selection with Cluster and Uncertainty (GSCU) strategy, which guar-
antees that the chosen samples are evenly distributed across clusters and uncer-
tainty intervals. Experiments on the Promisel2 and UTAH datasets demonstrate
that our method outperforms random selection and five state-of-the-art active
learning strategies across multiple selection ratios. In terms of Dice Similarity
score (DSC), Our approach demonstrates a performance improvement ranging
from 6.68% to 27.6% on the Promisel2 dataset at a 5% selection ratio, outper-
forming all other methods. On the UTAH dataset with a selection ratio of 0.5%,
it shows at least 6.57% and up to 49.21% improvement. Notably, our method
achieves performance comparable to full annotation with only 10% and 1.5% of
the annotation cost on the Promisel2 and UTAH datasets, respectively.

2 Method

The overall structure of our framework is illustrated in Fig. [[] Considering an
unlabeled training set D = {X;}¥ |, we aim to select a subset with M samples
for annotation that are then used for model training. Firstly, we perform K aug-
mentations on each image X; and then utilize SAM [II] to obtain patch-level
image features and uncertainty. Subsequently, we employ the Patch-based Global
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Distinct Representation (PGDR) strategy to derive distinctive image represen-
tations. Finally, the Greedy Selection with Cluster and Uncertainty (GSCU)
strategy is employed to select samples that are both representative and diverse,
which are then used to train a segmentation model.

2.1 Patch-level Uncertainty and Image Feature Obtained by SAM

SAM [I1] consists of an image encoder Ej,,, and a decoder D,, for predicting
segmentation masks. Additionally, a prompt encoder E..., is incorporated to
align image and prompt features. For a given image X; and a specified prompt
‘P;, the predicted masks M; ; is expressed as:

Mi,j = Dm(Eimg(Xi)aEprom(Pj)) (1)

To assess SAM’s comprehension of an image without annotations, we utilize
its “everything mode”, where SAM [IT] generates automatic prompts to segment
all target regions. To reduce noise, we take a union of all segmentation results
with a size smaller than half of the image, thereby obtaining the segmentation
results M;, which is formulated as:

N
M, = \/ T Mi(n)| < 5 - H - W] 2)

n=1

where Z(-) is the indicator function that equals 1 if the condition is satisfied
and 0 otherwise, |M;(n)| represents the size of M;(n), H and W denote the
height and width of X;, and N represents the number of region. To obtain the
uncertainty of the image, we applied K augmentations to X;, including intensity
and spatial transformations. Subsequently, we utilize Eq. [1] and Eq. [2] to derive
the segmentation results M}, M2... M for them. It is worth noting that we also
applied Ejp,4 to X, thereby obtalning the patch-level image features F;. Next,
we obtain the patch-level uncertainty U;, which is formulated as:

Ui = —N;(1— M) + 0.5 (3)

where M; = % Zszl MF to average all masks.

2.2 Patch-based Global Distinct Representation

To obtain more distinct feature for X;, we propose a Patch-based Global Dis-
tinct Representation (PGDR) strategy, where the patch-level image features are
weighted and fused based on their uncertainty, resulting in a global distinct fea-
ture F; where the uncertain regions are amplified. Then, Global average pooling
is applied to U; to obtain UZ, which represents the image-level uncertainty. F,
and U, are obtainted by:

R

- Fz rUir

Fi — Zr:lR ’ U7 (4)
Zr:l Ui,r
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where R represent the number of patches in X;. Through the PGDR strategy,
we ultimately obtain more distinctive global representations F; and U;.

2.3 Greedy Selection with Cluster and Uncertainty

With the global representations F,and U; extracted, to ensure that the selected
samples are both informative and representative, we propose a Greedy Selection
with Cluster and Uncertainty (GSCU) strategy. Firstly, k-means clustering al-
gorithm is applied to the image-level features Fi, and the cluster number C' is
the same as the number of samples to be selected. For X;, its assigned class ¢;
is obtained by: R

ci = argminjeqi o, eyl Fi — sl (6)

where C' represents the number of clusters and p; denotes the centroid of the
cluster. Then, one sample is chosen from each cluster, so the C selected samples
have good representativeness. Besides, to guarantee that the chosen samples
are evenly distributed across uncertainty intervals, we adopt greedy selection
(GS). When selecting the first sample, the sample with the median uncertainty
is chosen in any cluster. For subsequent selections, the sample is greedily selected
if its minimum distance to the uncertainties of all currently selected samples is
maximized. In other words, a subset D’ is extracted from the training set D.
When selecting a sample from a new cluster C. A sample X! from C will be
chosen if Eq [7]is satisfied.

0~ Uy)) ™)

X! = arg max(_min
X/eC X;€D’

Through this GSCU strategy, we obtain a sample subset that better repre-
sents the distribution of the entire training set. The choosed samples are first
annotated by the annotator, and then we use supervised training on these sam-
ples to train the segmentation model.

3 Experiment and Results

3.1 Experiment Details

Dataset To evaluate the effectiveness of our proposed SUGFW framework,
we conducted experiments on two publicly accessible MRI datasets. The first
dataset, Promisel2 [12], is dedicated to prostate segmentation and consists of
100 MRI images, which were partitioned in a 5:2:3 ratio. This dataset has a large
average spacing of 3.3mm, which makes it more suitable for 2D segmentation
networks. Following the extraction of a subset of slices, the final datasets were
established, comprising 960 slices for training, 353 for validation, and 529 for
testing. All images were uniformly resized to 256 x 256 pixels. The second dataset,
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Table 1. DSC (%) and HD95 (mm) of different cold start active learning methods
on Promisel2 and UTAH datasets. In each line, the best results are in bold and the
second-best are underlined.

Dataset Ratio ~ Metric Random ProbCover [24] FPS [9] TypiClust [7] CALR [8] ALPS [26] SUGFW
DSC (%) 54.2442385 374249577 50.85126.11 47.3142497 58.3442415 42.70+22587 65.02122.82

0.05
Promisel?2 HD95 (mm) 69.72+48.80 26.9142237 43.90+30.15 32.08128.22 8.99+12.45 25.20+16.06 14.51118.77
i 0.15 DSC (%) 85.1216.20 71.92413.26 83.63+6.24 85.74+5.00 73.80+10.33 85.83+451 86.3914.3s
HD95 (mm) 7.76111.38  24.7112100  9.0l40ss  5.701572  38.8612020 7.7811078 4.63+4.28
0.005 DSC (%) 56.141+17.84 16.3211511  33.78121.18 57.96111.86 39.43120.40 49.4141050 65.53112.66

UTAH HD95 (mm) 86.05+52.84 182.87+27.57 95.90+65.53 74.72+50.05 79.92451.95 103.76+48.33 50.57+40.51
0.015 DSC (%) 71.581825 33.3242008 73.074058 72.343006 59.0141512 71.0241286 76.1248.15
: HD95 (mm) 35.41+33.49 80.95+72.03 45.75+43.68 72.00+61.32 88.82+47.86 29.05+24.87 42.34142.07
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Fig. 2. Performance of cold start active learning methods under different sampling
ratios.

UTAH [22], focuses on left atrium segmentation and includes MRI images from
154 patients with atrial fibrillation. This dataset was divided into 100 cases for
training and 54 for testing with each slice resized to 512x512 pixels. 20 cases
were selected from training set for valadation. For cold start active learning,
we only keep the annotations for a small portion (e.g., 15%) of the training set
based on sample selection for training.

Implementation Experiments were implemented in PyTorch on a Linux server
equipped with one NVIDIA Tesla V100 GPU. For the SAM [11] version, we used
the ViT-Base [6] checkpoint of the pre-trained model. We used the UNet [I7]
model for the segmentation task, and the number of feature channels at the
five resolution levels were set to (16, 32, 64, 128, 256). We employed the SGD
optimizer with a learning rate of 0.01, a batch size of 8, and conducted train-
ing for 1000 epochs. Regarding the datasets, for Promisel2, the input size was
224224, with sampling ratios of 1%, 2%, 3%, 5%, 10% , 15%, and 20%. For
UTAH with more slices in the training set, the input size was 480x480, and the
corresponding sampling ratios were 0.1%, 0.2%, 0.3%, 0.5%, 1%, 1.5%, 2%. The
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Fig. 3. Visual comparison of different active learning methods with an annotation
budget of 15% and 1.5% for Promisel2 and UTAH. The prediction and ground truth
are displayed in red and green curves, respectively.

evaluation of the model was carried out with Dice Similarity Coefficient (DSC)
and the 95-th percentile of Hausdorff Distance (HD95) in 3D space.

3.2 Comparison with Existing Methods

We compared our method with six different sampling strategies: (1) Random:
randomly selecting samples, (2) ProbCover [24]: selecting samples based on the
maximum out-degree within a distance threshold, (3) FPS [9]: choosing samples
that are the farthest apart within each cluster, (4) TypiClust [7]: selecting the
sample with the highest typicality (inverse of average distance to other points)
within each cluster, (5) CALR [8]: selecting samples with the highest information
density within each cluster, and (6) ALPS [26]: choosing the sample closest to
the cluster center. To ensure a fair comparison, all methods used image features
obtained through our PGDR, and for the Random strategy, we averaged the
results across five different random seeds to ensure robustness.

The experimental results on both datasets are summarized in Fig. [2l Our
method consistently outperforms the other approaches across most selection ra-
tios. On Promisel2, our method achieves an 8.52% higher DSC than the second-
best method at a 2% selection ratio, and the performance is comparable to fully
supervised learning with a 10% selection ratio. Furthermore, only CALR [8] and
our method show steady improvements as the annotation ratio increases, while
others struggle to surpass random sampling. On UTAH, our method achieves a
14.63% higher DSC than the second-best method with a selection ratio of 3%.
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Table 2. Ablation Study of our method.

Dataset Ratio Metric w/o PGDR w/o Clustering w/o GS SUGFW (Ours)
DSC (%) 44.36+26.55 57.99+23.36 55.92+27.18  65.02422.82

Promisel?2 0.05 HD95 (mm) 61.72+46.30 10.7547.62 15.42417.11 14.51 41877
DSC (%) 84421603 85701452 84511540  86.3914.38

HD95 (mm) 4.97 1541 6.87+10.00 5.1546.19 4.631+4.28
0.005 DSC (%) 47.38117.24  45.00422.20 48.04426.08 65.53+12.66

UTAH ' HD95 (mm) 81.70+49.91  92.04+57.10 50.51+36.45 50.57+40.51
0.015 DSC (%) 72.55+7.85  75.74+10.36 68.98+12.16 76.1218.15

HD95 (mm) 42.1]4:40,71 28.89:{:27,55 59.143:50,14 42.34i42,07

Impressively, our method matches the performance of fully supervised learning
with only a 1.5% annotation ratio. Notably, ProbCover [24] shows significant
limitations, consistently yielding the lowest DSC across multiple ratios on both
datasets. Table [1| displays DSC and HD95 results under two annotation ratios.
Our method achieves superior HD95 performance across most selection ratios,
although it is occasionally surpassed by certain approaches in a few cases. Fig. [3]
presents the visual comparison results, which demonstrates that our method
generates masks with more precise boundaries than the others.

3.3 Ablation Study

Next, we evaluated the contributions of the PGDR and GSCU modules within
our framework to understand their impact on performance. Firstly, for the PGDR
module, we replaced the uncertainty weighting with global average pooling to
obtain F}. The corresponding results shown in Table indicate a noticeable de-
cline in DSC of 1.97% and an increase of 0.34 mm in HD95 on Promisel2 at a
15% selection ratio. Subsequently, we examined the role of the GSCU module in
detail. We first removed the clustering component and relied solely on uniform
selection based on uncertainty, which resulted in a 0.69% decrease in DSC and a
2.24 mm increase in HD95. We then removed the Greedy Selection (GS) strategy
within the GSCU module, opting instead to randomly select samples from each
cluster. The results demonstrate that random selection leads to a 1.88% decrease
in DSC and a 0.52 mm increase in HD95 compared to our full SUGFW frame-
work. The ablation study clearly highlighted the critical roles of both PGDR
and GSCU strategies in our SUGFW framework.

4 Conclusion

In conclusion, we proposed a novel framework SUGFW for cold start active
learning, leveraging the strengths of SAM and a dual-strategy approach to en-
hance representation and selection. Our framework begins by applying K-times
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augmentations to images and utilizing SAM to extract patch-level image fea-
tures and uncertainty. The Patch-based Global Distinct Representation strategy
is then employed to derive distinctive global features by weighting and fusing
patch-level features based on uncertainty, ensuring that uncertain regions are
amplified. Finally, the Greedy Selection with Cluster and Uncertainty strategy
is introduced to select samples that are both representative and diverse, en-
suring a uniform distribution of uncertainties across clusters. Our experimental
results demonstrate the effectiveness of the proposed framework in improving
segmentation accuracy by selecting informative and representative samples. In
the future, we will further extend this framework to other medical imaging tasks
and explore its potential in multi-modal data scenarios.
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