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Abstract. Multi-modal MR imaging plays a crucial role in clinical di-
agnosis and medical research. However, its widespread adoption is hin-
dered by significant time and hardware costs. Medical image transla-
tion, which aims to synthesize missing modalities from available data,
presents a promising solution. Nevertheless, existing models often strug-
gle to maintain the structural consistency required for clinical applica-
tions. We introduced a disentanglement diffusion network –DisDiff, a
novel disentangled adversarial diffusion framework designed to address
these challenges. DisDiff incorporates a Disentangled module that decou-
ples content and style factors within image features, thereby enabling
the generation of anatomically precise images. Conditioned on disen-
tangled representations, compared to traditional diffusion-based models,
DisDiff not only accelerates the learning process, but also improves im-
age quality and enhances training efficiency. In addition, we proposed a
content discriminator module to further enforce anatomical consistency,
effectively addressing the lack of explicit structural guidance in conven-
tional diffusion models. Experimental evaluations on multi-contrast MRI
translation demonstrate that DisDiff substantially outperforms existing
methods in both image quality and structural preservation, positioning
it as a promising solution for real-world clinical applications.

Keywords: medical image translation · diffusion model · disentangled
representations · structure preservation.

1 Introduction

Multi-modal MR imaging is essential for evaluating both anatomical and func-
tional processes in the human body, improving diagnostic accuracy and enabling
advanced applications [1, 2]. However, the widespread adoption of multi-modal
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protocols is hindered by significant financial and logistical challenges [3]. Medical
image translation offers a promising solution by synthesizing missing modalities
from available data. Besides its potential, this task remains challenging due to
the complex, nonlinear variations in tissue signals across modalities [4, 5]. Re-
cently, deep learning-based approaches have demonstrated significant potential
in the field of image translation. These methods leverage data-driven priors to
address challenges and enhance translation performance.

Deep learning-based image translation typically involves training models to
approximate the conditional distribution of target images given source images [6,
7, 8]. Generative adversarial network (GAN) was once the dominant framework
due to their remarkable ability to generate realistic images [9, 10, 11], achiev-
ing state-of-the-art results in tasks such as cross-scanner MRI synthesis [10],
multi-contrast MRI synthesis [9, 12], and cross-modal synthesis [13]. However,
GAN-based networks often struggle with training instability and convergence
issues. Recently, diffusion models [14] have emerged as a promising alternative,
offering improved stability and image quality by progressively denoising ran-
dom noise. Their strong mathematical foundation provides a more interpretable
framework, which has shown superior performance in medical image translation
when compared to GANs [15].

Despite these advantages, diffusion models present several limitations in med-
ical image translation. First, their lack of clinical interpretability, resulting from
the process of denoising random noise, limits their applicability in clinical set-
tings. Second, diffusion models typically model pixel values directly, which can
be inefficient for medical images that require fine-grained details. Finally, the
absence of direct structural constraints hinders the enforcement of anatomical
consistency during generation. These challenges highlight the need for further
clinical adaptations.

To address these limitations, we proposed the disentanglement diffusion net-
work – DisDiff model, a novel disentangled adversarial diffusion framework de-
signed for efficient and high-fidelity medical image synthesis in the modality
translation task. To enhance clinical interpretation, we integrated the disentan-
glement module, which enables the generation of precise images. For improve-
ment of the learning efficiency, we use disentangled representations as conditional
inputs to guide the diffusion process, accelerating the learning process compared
to pixel-level modeling. Finally, to address the lack of structural constraints, we
introduced a content discriminator module to enforce anatomical consistency,
compensating for the absence of explicit structural guidance.

Our contributions are fourfold: (1) improving clinical interpretation through
a disentangled network that facilitates anatomically relevant image generation;
(2) enhancing learning efficiency by guiding the diffusion process with disentan-
gled representations instead of directly modeling pixel values; (3) introducing
a content discriminator to ensure structural consistency and enforce anatomi-
cal constraints; and (4) Extensive experiments on multi-contrast MRI transla-
tion tasks demonstrate that DisDiff outperforms state-of-the-art(SOTA) GAN-,
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diffusion-, and disentanglement-based methods in both image quality and effi-
ciency.

2 Methods

2.1 Adversarial Diffusion Models

Diffusion models generate realistic images by progressively transforming noise
into samples. They consist of two processes: the forward process, which adds
noise to the input image x0 ∼ q(x0) and the reverse process, which denoises the
noisy samples to generate a clear image:

xt = (1− βt)xt−1 + βtϵ, q(xt−1|xt) ∼ N (xt−1;µ(xt, t), Σ(xt, t)), (1)

where βt is the noise variance, µ(xt, t) and Σ(xt, t) denote the mean and covari-
ance of the reverse process, respectively.

In contrast, Muzaffer ¨Ozbey et al. [15] introduces a novel adversarial diffu-
sion model, which is designed to improve the efficiency of the diffusion process
with a larger step size k ≫ 1. In this variant, the forward diffusion process is
described by:

xt = (1− γt)xt−k +
√
γtϵ, q(xt|xt−k) = N (xt; (1− γt)xt−k, γtI), (2)

where γt is the noise variance at timestep t controlled by the following schedule:

γt = 1− eβmin

(
tk
T

− βmax − βmin

2T 2

)
. (3)

Given the breakdown of the normality assumption for a large k, an adversarial
framework is introduced. A generator Gθ(xt, y, t) estimates the denoised im-
age x̂t−k while a discriminator Dθ(x̂t−k,xt, t) distinguishes true and generated
samples. The loss functions for Gtheta and Dθ are presented by:

LGθ
= Eq(xt|x0,y),pθ(xt−k|xt,y) [− log(Dθ(x̂t−k))] , (4)

LDθ = Eq(xt|x0,y),q(xt−k|xt,y) [− log(Dθ(xt−k))] + Epθ(xt−k|xt,y) [− log(1−Dθ(x̂t−k))]

+ ηEq(xt−k|xt,y)

[
∥∇xt−kDθ(xt−k)∥2

]
,

(5)

where η is a regularization term controlling the gradient penalty. This adversarial
setup enables the effective learning of the reverse diffusion process, even with a
large step size k.
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2.2 Disentanglement Networks

Achieving disentanglement in multi-modal medical image tasks requires appro-
priate inductive biases, as without these, disentanglement is infeasible [6]. In
translation tasks, we hypothesize that anatomical structures, consistent across
modalities, should be captured in modality-independent content factors, while
modality-specific variations should be encoded as attributes. This assumption
enables more accurate synthesis by separating structural and appearance-related
features, aligning better with the nature of medical data [16].

The disentanglement framework consists of content encoders {Emi
c , E

mj
c },

attribute encoders {Emi
a , E

mj
a }, generators {Gmi , Gmj} for reconstructions, dis-

criminators Dc for content consistency and {Dmi , Dmj} for modality-specific
characteristics.

For an input image mi, the content encoder and attribute encoder map
the image to separate content and attribute features: zmi

c = Emi
c (mi), z

mi
a =

Emi
a (mi). Cross-modal synthesis mi→j is achieved by swapping the attribute

features between modalities while preserving the original content feature. After
generating mi→j , the content feature is re-extracted and combined with the orig-
inal attribute representation to reconstruct the input image, thereby enforcing
cycle consistency:

mi→j = Gmj (zmi
c , zmj

a ), mi→j→i = Gmi(Emi
c (mi→j), z

mi
a ). (6)

Especially, for inputs pairs mi and mj , the discriminator Dc encourages that the
content feature zc remains consistent. The objective function for Dc is:

Lc = Emi∼p(mi) [logDc(zc(mi))] + Emj∼p(mj) [log (1−Dc(zc(mj)))] . (7)

This consistency promotes the alignment of anatomical structures across differ-
ent modalities, enhancing the reconstruction performance.

2.3 DisDiff

The proposed disDiff model comprises a disentanglement learning module and
an adversarial diffusion module, enabling unsupervised image translation while
preserving anatomical structures and modality-specific features.

The disentanglement learning module separates anatomical structures from
modality-specific features, enabling cross-modal synthesis. Given image pairs
(mi and mj) from modalities i and j, respectively, the module extracts the
anatomical/content features and modality-specific/attribute features for both
modalities:

zmi
c , zmi

a = Emi(mi), zmj
c , zmj

a = Emj (mj). (8)

where Emi/Gmi and Emj/Gmjdenote encoders/generators for domains i and j
respectively. Then, cross-modal synthesis is achieved by applying the disentan-
glement decoder with content features exchanged:

mi→j = Gmj (zmi
c , zmj

a ), mj→i = Gmi(zmj
c , zmi

a ). (9)
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Fig. 1. The overview of DisDiff framework. Given input image pairs (mi, mj), the
disentanglement modules first generate cross-domain images mi→j and mj→i. These
intermediate representations are then fed into the diffusion modules, in conjunction
with noise images sampled from N (0, 1), progressively denoise and reconstruct the
original image m̂i and m̂j . Disentanglement modules also generate reconstructions
mi→j→i and mj→i→j for the cycle-consistency mechanism. The solid line represents
the process flow of the image processing, while the dashed line represents the objects
that constitute the loss.

The diffusion module reconstructs target modality images from content fea-
tures provided by the disentanglement module. Starting with noise image pairs
(xT

i , x
T
j ) ∼ N(0, I), the reverse diffusion process iteratively refines the noisy in-

puts. At each time step t, the generator Gθi , Gθj produces denoised estimates
x̃0
i , x̃

0
j of the target modality images:

x̃0
i = Gθi(x

t
i, z

mi
c , t), x̃0

j = Gθj (x
t
j , z

mj
c , t). (10)

Refinements are then applied using the denoising distributions:

x̂t−k
i ∼ q(xt−k

i |xt
i, x̃

0
i ), x̂t−k

j ∼ q(xt−k
j |xt

j , x̃
0
j ). (11)

This iterative process continues until the target images x̂0
i , x̂

0
j are synthesized at

time step 0.
Consistency between the true target images and their reconstructed images

is enforced through a cycle-consistency loss:

Lcyc = Emi,mj

[
∥mi − x̂0

i ∥1 + ∥mj − x̂0
j∥1

]
, (12)

where x̂0
i and x̂0

j are generated target images from the diffusion module.
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During the inference stage, the diffusion module generates the images in
the target modality by leveraging the anatomical encoding zmi

c obtained from
the disentanglement module, and modality-specific features z

mj
a from the target

modality.

3 Experiments

3.1 Datasets

IXI Dataset In this study, we use T1 and T2 brain MRI scans from 80 healthy
subjects in the IXI dataset, with 60 subjects for training (90%/10% for training
and validation) and 20 for testing. We select 100 axial cross-sections containing
brain tissues. Since the IXI MR images are unregistered, we apply deep learning-
based tools [17, 18] for subject-level registration after skull stripping. Then, we
could obtain reference images to evaluate I2I translation performance.

BraTS Dataset The 2018 Multimodal Brain Tumor Segmentation Challenge
(BraTS) dataset [19] contains 285 annotated MRI scans from glioma patients
with all modalities aligned. The MRI volumes have been skull-stripped and re-
sampled to a resolution of 1 × 1 × 1mm3. For I2I translation, training/testing
ratio is set as 7 (also 90%/10% for training and validation) /3 as 100 axial
cross-sections containing brain tissue from each subject are used in our study.

3.2 Implementation Details

All models were implemented in PyTorch and trained with the Adam optimizer
(β1 = 0.5, β2 = 0.9) and an initial learning rate of 10−4, reduced by 0.1 every 10
epochs if validation loss did not improve for two consecutive epochs. Training was
performed on a workstation with two Nvidia RTX A6000 GPUs. Performance
was evaluated every 5 epochs on a validation set. Test set performance was
assessed using PSNR and SSIM metrics, which measure pixel-level accuracy and
perceptual similarity, respectively.

4 Results and Discussion

4.1 Comparison on SOTA methods

We compared the performance of our proposed model, DisDiff, with several
SOTA image translation methods, including DRIT++ [16], CycleGAN [20], At-
tentionGAN [21], StarGAN-v2 [22], MGUIT [23], InstaFormer [24], Hifi-Syn [25],
UNIT-DDPM [26] and SynDiff [15]. Specifically, we focused on one-to-one modal-
ity translation task (e.g., T1w-T2w translation task) to ensure a fair comparison.
The quantitative results for the T1w-T2w modality translation are summarized
in Table 1, with exemplary synthetic images shown in Fig. 1.
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Fig. 2. Comparison of I2I translation methods on IXI and BraTS datasets. Com-
pared to other SOTA methods, DisDiff shows superior structure-preserving translation
results.

DisDiff consistently outperforms other methods across all image synthesis
metrics. For T1w to T2w translation, it achieves the highest PSNR and SSIM
scores in both the IXI (25.71 and 0.8445) and BraTS (29.49 and 0.9256) datasets,
indicating superior structural similarity and perceptual quality. Visual compar-
isons (Fig. 2) show that DisDiff generates sharper, more realistic textures with
better anatomical alignment. In the inverse translation task (T2w to T1w), Dis-
Diff also leads with average SSIM and PSNR scores of 0.8661 and 27.05 for
IXI, and 0.8648 and 26.31 for BraTS. In contrast, methods like CycleGAN and
StarGAN-v2 exhibit noticeable errors in contrast and anatomical structures, es-
pecially in regions such as the cerebellar cortex. The outstanding performance
of DisDiff is attributed to its disentangled learning framework, which separates
content and attribute features, enabling more accurate modality translation. Re-
garding efficiency, we compared our method, DisDiff, with SynDiff. Both meth-
ods employ diffusion-based inference, therefore, we focus on training efficiency:
under identical conditions with a batch size of 4, DisDiff achieves convergence
in approximately 1.2 days, whereas SynDiff requires around 2.3 days to reach
comparable performance.

Table 1. Performance for multi-contrast MRI translation tasks in IXI and BraTS
dataset. PSNR (dB) and SSIM (%) are listed as mean±std across the test set.Boldface
marks the top-performing model in each task.

Method
IXI BraTS

T1 → T2 T2 → T1 T1 → T2 T2 → T1
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CycleGAN 19.71±1.23 77.39±1.65 20.33±1.11 78.62±1.74 21.80±1.29 74.04±1.82 22.28±1.34 77.18±1.71
AttentionGAN 21.89±1.35 80.27±1.68 21.45±1.26 81.03±1.65 22.33±1.36 79.07±1.85 23.41±1.44 81.03±1.72
DRIT++ 22.32±1.31 80.50±1.67 22.24±1.30 78.86±1.70 22.49±1.39 81.15±1.83 23.34±1.47 82.61±1.76
StarGAN-v2 22.16±1.30 79.75±1.73 22.55±1.36 80.53±1.68 22.94±1.40 81.82±1.86 23.77±1.51 82.55±1.80
MGUIT 24.37±1.40 79.79±1.71 23.27±1.45 83.21±1.67 23.28±1.41 82.97±1.89 24.55±1.53 83.51±1.84
InstaFormer 22.40±1.32 81.08±1.75 23.82±1.48 81.84±1.70 23.16±1.42 82.90±1.90 25.05±1.55 83.72±1.86
HiFi-Syn 23.84±1.39 82.40±1.69 24.18±1.50 83.71±1.66 24.11±1.45 83.31±1.88 24.98±1.56 84.59±1.85

UNIT-DDPM 22.44±1.26 81.64±3.06 24.01±0.72 86.59±2.16 23.71±1.50 88.75±2.49 19.84±1.54 85.92±2.28
SynDiff 24.92±4.90 83.89±1.68 26.07±4.35 85.47±1.26 27.97±2.23 90.43±1.46 24.33±3.80 84.96±1.42
DisDiff 25.71±4.20 84.45±1.33 27.05±4.50 86.61±1.70 29.49±2.55 92.56±1.89 26.31±3.62 86.48±1.28
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To demonstrate how the disentanglement network improves the preservation
of content features, we visualize the content features of T1w and T2w images
extracted from the disentanglement Network (Fig. 3). As shown in Fig. 3, our
disentanglement network effectively preserves the similar content features, re-
gardless of the modality, which contributes to the high SSIM values significantly
in our subsequent observed results.

Table 2. Ablation results of three different modules in DisDiff. Boldface marks the
top-performing model in each task.

Task Disentangled Diffusion Dc PSNR SSIM

T1w → T2w

✓ × × 22.32±1.31 80.50±1.67
× ✓ × 22.44±1.26 81.64±3.06
✓ ✓ × 23.52±3.56 79.22±2.28
✓ ✓ ✓ 25.71±4.20 84.45±1.33

T2w → T1w

✓ × × 22.24±1.30 78.86±1.70
× ✓ × 24.01±0.72 86.59±2.16
✓ ✓ × 24.31±2.89 81.12±1.74
✓ ✓ ✓ 27.05±4.50 86.61±1.70

4.2 Ablation Study

To evaluate the contributions of the three key components in our model – the
disentanglement module, diffusion mechanism, and content discriminator, we
conducted an ablation study. We could observe from Table 2 that the model in-
corporating all three components achieves the best performance. Specifically, the
disentanglement network enhances the separation of content and style features,
while the diffusion mechanism improves the smoothness and consistency of gener-
ated features. The content discriminator further refines the content preservation

Fig. 3. Similar content-specific features are extracted from the same subject’s corre-
sponding T1w and T2w images by the disentanglement module.
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by ensuring the consistency of content features throughout the transformation
process. These findings underscore the importance of each component in im-
proving the overall performance, with the combination of all three components
leading to the best results.

5 Conclusion

We propose DisDiff, a novel disentangled diffusion model for MR images trans-
lation. DisDiff combines a disentanglement module, which preserves anatomical
structures, and a rapid diffusion process for efficient generation of high-quality
images. Trained in an unsupervised, cycle-consistent manner, DisDiff stands out
in translating unpaired data while maintaining fidelity across modalities. Exper-
imental results show that DisDiff outperforms existing methods in both image
quality and translation performance, demonstrating its potential for high-fidelity
medical image translation in clinical applications.
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