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Abstract. Early diagnosis of attention deficit hyperactivity disorder
(ADHD) in children and its underlying neurobiological mechanisms have
become a focal point of research. Existing AI-based diagnostic methods
show promise but struggle to fully capture dynamic correlations between
brain regions, limiting their clinical effectiveness. In this study, we pro-
posed a time&frequency-dynamic functional connectivity fusion network
(T&F-DFC FusionNet) based on functional near-infrared spectroscopy
(fNIRS) to assist in the objective diagnosis of children with ADHD in
clinical practice. The T&F-DFC FusionNet can extract the time and fre-
quency domain features of spatial dynamic functional connectivity across
channels of fNIRS data, and improve the diagnostic results by effectively
fusing multi-domain features. Meanwhile, T&F-DFC FusionNet used a
leave-one-ROI-out method to study specific functional brain regions with
abnormal connectivity in children with ADHD to identify clinically sig-
nificant biomarkers. Through a series of experiments based on clinical
data, the results show that T&F-DFC FusionNet is effective in diagnos-
ing ADHD in children, and its performance is significantly better than
that of the comparison model. In addition, notably, our findings suggest
that connectivity abnormalities in the right dorsolateral prefrontal cor-
tex and the BA 8 may be key brain regions involved in the pathogenesis
of ADHD in children. In summary, this study provides new insights and
methods for clinical auxiliary diagnosis and mechanism exploration of
ADHD.

Keywords: children with ADHD · fNIRS · dynamic functional connec-
tivity · time domain · frequency domain.

1 Introduction

Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmen-
tal disorder, primarily affecting children and adolescents, with potential persis-
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tence into adulthood [3]. Dysregulation of brain functional connectivity (FC)
plays a key role in ADHD, impacting attention, focus, and response regulation.
The brain’s dynamic nature, characterized by continuous reorganization of func-
tional networks, is especially evident during cognitive tasks [11, 17]. Meanwhile,
dynamic functional connectivity (DFC) is crucial for understanding the temporal
dynamics and flexible reorganization of brain networks, providing insights into
neural signatures linked to ADHD symptoms and cognitive deficits in children
[19]. Functional near-infrared spectroscopy (fNIRS) offers a non-invasive, high-
resolution method for diagnosing and studying brain function in ADHD children
during cognitive tasks or clinical settings [8].

Machine learning models for fNIRS signals focus on capturing temporal dy-
namics from time series data for prediction. Wang et al. applied regularized linear
discriminant analysis to analyze brain connectivity and distinguish ADHD in-
dividuals from healthy controls (HC) during the Stroop task [23]. For instance,
Wan et al. used a multimodal EEG-fNIRS approach to explore dynamic connec-
tivity in children with autism spectrum disorder, revealing atypical states and
predicting behavioral development [19]. Tang et al. proposed a framework based
on fNIRS time-domain (TD) dynamic functional connectivity to identify emo-
tion sensitivity biomarkers, distinguishing emotional responses between nursing
students and registered nurses using both unsupervised and supervised tech-
niques [18]. While these studies highlight the effectiveness of machine learning
for fNIRS data classification, traditional methods often struggle with the data’s
complexity due to reliance on manually extracted features and dimensionality
reduction, limiting performance and increasing computational time.

Deep learning methods have emerged as more effective alternatives to ad-
dress these challenges [2, 24, 16]. The TD dynamic connectivity features have
been widely used for capturing important spatial relationships in functional brain
networks, demonstrating their potential to enhance accuracy in brain signal clas-
sification tasks [9, 5, 13, 25]. However, a comprehensive understanding of brain
signals requires both time and frequency domain (FD) considerations. Studies
suggest that ADHD patients exhibit reduced dynamic variability in the time di-
mension, making stable connectivity patterns difficult to maintain [6, 14]. In the
FD, abnormal functional activity is observed in specific frequency bands [12]. By
capturing both temporal and frequency characteristics, the model extracts more
comprehensive connectivity features, offering new insights and a more reliable
basis for differentiating neural mechanisms between ADHD children and healthy
controls.

To address the challenge that existing feature extraction methods fail to
fully capture the dynamic cross-dimensional correlations between brain regions
in children with ADHD, the time&frequency-dynamic functional connectivity
fusion network (T&F-DFC FusionNet) based on fNIRS was proposed for objec-
tive ADHD diagnosis. By segmenting multivariate fNIRS data into time slices,
T&F-DFC FusionNet could enhance the capture of multi-domain dynamic coor-
dination between brain regions during tasks in children with ADHD by fusing TD
and FD FC features in different time periods, which can improve the clinical di-
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agnostic accuracy of ADHD. In addition, the T&F-DFC FusionNet model adopts
leave-one-ROI-out method to evaluate the contribution of abnormal functional
connectivity in different brain regions to the classification of ADHD, aiming
to identify relevant biomarkers and provide region-specific evidence for clinical
diagnosis.

2 Method

This section details the components of the proposed T&F-DFC FusionNet, as
shown in Fig. 1(a), which includes 4 main processes. First, T&F-DFC FusionNet
constructs a time domain-dynamic FC feature extraction (T-DFC) module and
a frequency domain-dynamic FC feature extraction (F-DFC) module to extract
the dynamic interaction patterns between brain regions in the time and frequency
domains during the task process, respectively. Second, the features extracted by
the T-DFC module and the F-DFC module are fused to display the FC change
pattern from a multi-domain perspective and over time, and to construct the
high-level spatial features of the time slice feature extraction module (Slices
FEM). Third, the sampling bi-directional long short-term memory (Bi-LSTM)
extracts the temporal association of the high-level spatial features of the time
slice. Finally, classification is performed through two layers of dense layers.

The recorded multi-channel fNIRS data are represented as D = {(xn, yn)}Nn=1,
where N is the total number of samples and xn ∈ Rt×C is the nth sample contain-
ing 22 (Ci, i ∈ {1, 2, . . . , 22}) channels and t time points, the fNIRS sampling
frames is 750. yn is the category label of the nth sample, denoted by 0 and 1 for
HC and ADHD, respectively.

2.1 T-DFC feature extraction module

In the T&F-DFC FusionNet model, the T-DFC module constructs TD features
through three main steps, as shown in Fig. 1(b). First, a multi-scale temporal
convolutional network (MsTCN) is used to extract temporal features from each
channel’s time series. The MsTCN consists of three parallel temporal convolu-
tional networks (TCN) with different kernel sizes (1×3, 1×5, 1×7), followed by
a concatenation layer, enabling the capture of features at multiple time scales
and improving inter-channel temporal relationship representation. This separate
processing reduces noise interference and preserves channel-specific differences.
The resulting channels are stacked into tensors to represent high-level tempo-
ral features. Second, temporal dynamic connectivity is analyzed by slicing each
channel’s time series into 10 segments, each with 75 time frames, resulting in a
shape of (10, 75, 22, fC), where 22 is the number of channels, 10 is the number
of slices, 75 is the number of time frames per slice, and fC is the number of
features from the MsTCN. Finally, pearson correlation is applied to compute
the FC between channels within each slice, generating a tensor TTS of shape
(10, 22, 22, fC), representing the temporal DFC between channels across time
and reflecting the dynamic FC changes unique to children with ADHD.
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Fig. 1. The basic structure of T&F-DFC FusionNet. "a@b*c" is defined by the number
of kernels, designated as "a" and the size of each kernel, represented by "b*c".

2.2 F-DFC feature extraction module

The F-DFC module analyzes functional connectivity in different frequency bands
to capture neural activity differences between brain regions within specific fre-
quency ranges, as shown in Fig. 1(c). Similar to the T-DFC module, the multi-
channel time series data are sliced into segments of the same size. The coherence
between channels is then computed in the FD using Welch’s method [21], which
calculates the power spectral density (PSD) (Eq. (1)) and cross-power spectral
density (CPSD) (Eq. (2)) for each time slice [4]. The FD channel correlation,
W , is derived from the PSD and CPSD, as shown in Eq. (3). This process gener-
ates an output tensor, TFS with shape (10, 22, 22, ff ), where ff is the number
of frequency components, revealing the pathological differences between ADHD
and HC children in specific frequency bands. In this experiment, a Hann window
with a window size of 20 and an overlap rate of 50% was used to calculate W .
The PSD for each channel Ci is calculated as:

PCiCi(f) =
1

K

K∑
k=1

|Xk(f)|2 , i ∈ {1, 2, . . . , 22} (1)

where K is the number of time slices, K = 10. Xk(f) is the spectrum obtained
by applying the fast fourier transform (FFT) to the x of the kth time slice.
|Xk(f)|2 is the normalisation factor of the windowing function. PCiCi

(f) is the
power spectral density of the signal under the channel Ci at frequency f . The
CPSD between channels Ci and Cj is computed as:
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PCiCj (f) =
1

K

K∑
k=1

Xk(f) · Y ∗
k (f), i, j ∈ {1, 2, . . . , 22} (2)

where Y ∗
k (f) is the complex conjugate of the FFT of the signal from channel

Cj at kth time slice. PCiCj (f) is the cross-power spectral density of the signals
between channels Ci and Cj . The coherence WCiCj (f) between channels Ci and
Cj is derived from the PSD and CPSD as:

WCiCj
(f) =

∣∣PCiCj (f)
∣∣2

PCiCi(f) · PCjCj (f)
, i, j ∈ {1, 2, . . . , 22} (3)

PCiCj (f) is the cross-power spectral density between channels Ci and Cj , PCiCi(f)
and PCjCj

(f) are the power spectral densities for channels Ci and Cj , respec-
tively.

2.3 Feature fusion and Slices FEM

The TTS and TFS tensors are spliced along the time slices to align the time-
frequency features, forming a fused tensor for the Slices FEM input. As shown
in Fig. 1(d), each time slice of the fusion tensor is processed through a Conv2D
layer, followed by Haar wavelet downsampling (HWD). The HWD structure,
shown in Fig. 1(d), applies a 2D Haar wavelet transform (HWT) to decom-
pose the input features into four frequency components: Low Frequency-Low
Frequency (FLL), Low Frequency-High Frequency (FLH), High Frequency-Low
Frequency (FHL), and High Frequency-High Frequency (FHH). These compo-
nents are then processed through a network combining 2D sparse layers, batch
normalization, and ReLU activation for non-linear enhancement [22]. Compared
to traditional pooling methods, HWD preserves more local spatial information
and achieves efficient feature downsampling. The downsampled tensor is passed
through the next Conv2D layer for further compression and refinement of higher-
order spatial features. Finally, GlobalAveragePooling2D is applied to compute
the global average for each channel, resulting in more compact high-level fea-
tures. The Slices FEM independently extracts high-level features from each time
slice, improving the capture of dynamic functional connectivity characteristics
in ADHD children.

The T&F-DFC FusionNet employs Bi-LSTM to capture dynamic time and
frequency FC (128 and 64), which is then transformed into a one-dimensional
vector and processed through two dense layers to realize the diagnosis of ADHD
in children. The T&F-DFC FusionNet was trained with Adam (lr = 0.0001,
batch size = 8), using early stopping and adaptive learning rate scheduling.
Core hyperparameters were optimized through Bayesian search.



6 Chu, Ma, et al.

3 Experiments and Results

3.1 Data preparation and Compared methods

The 47 HC (30 males, 17 females, aged 8.62±2.41 years) and 47 ADHD children
(31 males, 16 females, aged 8.79±1.98 years) were recruited from the Depart-
ment of Pediatrics, Xi’an People’s Hospital (Xi’an Fourth Hospital), for a verbal
fluency task (VFT) experiment, which was approved by the ethics committee
(approval number: KJLL-Z-H-2023005). fNIRS data were collected using the
ETG-One NIRS device (Hitachi Medical, Tokyo, Japan), with oxyhemoglobin
values obtained after preprocessing. Fig. 2(a) shows the spatial distribution of
the 22 fNIRS channels and 6 regions of interest (ROI): left and right dorsolat-
eral prefrontal cortex (lDLPFC, rDLPFC), medial, left and right frontal cortex
(mFPC, lFPC, rFPC), and Brodmann area 8 (BA8) [10].

Fig. 2. (a) Spatial distribution of channels and ROIs. (b) Average loss and average
ACC with 10×5-fold cross-validation. (c) t-SNE visualization of the training and test
data. (d) The 3D visualization in children brain images of the performance indicators by
applying the leave-one-ROI-out method, the darker the blue, the lower the performance.

Five methods were compared: two traditional classifiers, Support Vector Ma-
chine (SVM) with radial basis function kernels and Random Forest (RF) [7, 15],
and three deep learning models: Transformer-T [20], ConvLSTM2D with atten-
tion mechanism (ConvLSTMwA) [1], using Pearson correlation (ConvLSTMwA-
P) and Welch (ConvLSTMwA-W) for dynamic feature extraction in time and
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frequency domains. All models were evaluated via five-fold cross-validation and
10 independent experiments, with 72% of data reserved for training, 8% for val-
idation, and 20% for testing. Model performance was assessed using accuracy
(ACC), sensitivity (SEN), specificity (SPE), F1-score (F1), and area under the
curve (AUC).

3.2 Quantitative and Qualitative Results

Comparison with Baselines and Cluster visualization: Table 1 presents
the performance of T&F-DFC FusionNet and five compared models in ADHD
diagnosis. T&F-DFC FusionNet achieved an ACC of 88.25%, significantly out-
performing compared models (p < 0.05), the SEN (94.67%), F1 (88.29%), and
AUC (89.51%) were also significantly higher (p < 0.05), while the SPE (82.20%)
was better than most compared models, though slightly lower than Transformer-
T. Fig. 2(b) shows the average loss and accuracy of T&F-DFC FusionNet across
10×5-fold cross-validation, demonstrating consistent high accuracy and low loss,
confirming the model’s robustness and reliability in ADHD/HC classification.

Table 1. Performance comparison with baselines (Mean ± standard deviation)

Methods ACC (%) SEN (%) SPE (%) F1 (%) AUC (%)

Ours 88.25 (±2.47) 94.67 (±7.77) 82.20 (±4.07) 88.29 (±2.96) 89.51 (±5.67)
SVM 70.40 (±9.63) 77.58 (±9.35) 54.77 (±10.73) 72.22 (±14.35) 72.44 (±15.13)

Random Forest 72.52 (±8.84) 69.90 (±12.42) 66.90 (±4.38) 71.38 (±9.19) 75.72 (±8.42)
Transformer-T 84.04 (±3.75) 80.67 (±8.48) 85.11 (±9.48) 82.86 (±3.75) 86.46 (±8.13)

ConvLSTMwA-P 79.71 (±9.28) 84.76 (±9.35) 74.02 (±9.74) 79.49 (±11.29) 78.51 (±9.65)
ConvLSTMwA-W 77.54 (±12.91) 76.81 (±9.93) 76.83 (±13.24) 77.46 (±12.86) 82.33 (±12.22)

Dimensionality reduction using t-SNE (complexity parameter = 30) revealed
clear separation between ADHD and HC samples in both the training and test
sets, as shown in Fig. 2(c). This consistent distribution supports the model’s gen-
eralization ability. Additionally, t-SNE analysis demonstrated that the features
extracted by T&F-DFC FusionNet preserved the dynamic properties of fNIRS
signals, indicating strong discriminative power and biological relevance.

Ablation experiments: To evaluate the impact of DFC and time&frequency
domain fusion feature extraction in T&F-DFC FusionNet, ablation experiments
were performed. First, the T-DFC module was excluded, resulting in the con-
struction of a frequency domain-dynamic functional connectivity network (F-
DFCNet). Next, the time domain-dynamic functional connectivity network (T-
DFCNet) was formed by removing the F-DFC module. Finally, time-slices were
removed from both T-DFC module and F-DFC module, leading to the creation
of the time&frequency-functional connectivity fusion network (T&F-FCFNet)
by directly feeding the output of the Slices FEM into the fully connected layer.
As shown in Table 2, removing any component decreased model performance.
The absence of the single-domain DFC feature extraction module led to lower
ACC, SEN, and F1 scores. Additionally, omitting dynamic synergistic features
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between time slices significantly reduced ACC to 75.67%, along with substantial
drops in F1 score and AUC. These results highlight the crucial role of the fusion
of dynamic functional connectivity features in the time domain and frequency
domain in T&F-DFC FusionNet.

Table 2. The results of ablation experiments.

Methods ACC(%) SEN(%) SPE(%) F1(%) AUC(%)

Ours 88.25 (±2.47) 94.67 (±7.77) 82.20 (±4.07) 88.29 (±2.96) 89.51 (±5.67)
F-DFCNet 79.83 (±3.76) 83.39 (±15.18) 81.05 (±13.27) 79.26 (±5.42) 85.68 (±7.86)
T-DFCNet 81.01 (±13.91) 81.01 (±11.7) 82.18 (±8.89) 80.12 (±8.37) 86.59 (±7.01)

T&F-FCFNet 75.67 (±16.78) 93.81 (±5.6) 72.04 (±10.46) 79.28 (±14.16) 83.02 (±4.84)

The key biomarker assessment by leave-one-ROI-out: The leave-one-
ROI-out method involved: 1) Dividing samples into five folds, using four for
training and one for identifying key ROIs; 2) Training the model and saving
parameters; 3) Testing the model with all ROIs for baseline performance; 4)
Testing with each ROI removed by replacing channel Ci’s time series with the
average value; 5) Repeating for all ROIs. This process was repeated ten times
to reduce randomness. Table 3 compares mean results with the baseline. Re-
moval of the rDLPFC caused the largest drop in accuracy (-14.22%) and AUC
(-11.22%), followed by BA 8 with accuracy (-11.33%) and AUC (-9.89%) drops.
The Fig. 2(d) shows that the performance results of the T&F-DFC FusionNet
model were presented in real children’s brain images [26] after applying the leave-
one-ROI-out method to control the DFC features of one ROI. The blue areas are
mainly concentrated in the rDLPFC and BA8. These findings suggest rDLPFC
and BA8 are crucial for ADHD classification.

Table 3. Average reduction of indicators for leave-one-ROI-out compared to baseline.

ROI-out ∆ACC% ∆SEN% ∆SPE% ∆F1% ∆AUC%

rDLPFC -14.22 -21.24 -7.23 -10.49 -11.22
rFPC -3.11 -12.03 -7.71 -1.42 -1.05
BA8 -11.33 -19.26 -2.16 -4.55 -9.89
mFPC -4.22 -16.9 -3.85 -4.78 -4.04

lDLPFC -4.34 -6.94 -11.07 -9.23 -4.3
lFPC -4.02 -7.69 -7.12 -1.42 -6.17

4 Conclusion

In view of the fact that existing feature extraction methods are difficult to fully
capture the dynamic correlation characteristics of different dimensions between
brain regions of ADHD children, thus limiting the accuracy of clinical diagnosis,
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we proposed the T&F-DFC FusionNet model for to improve clinical diagno-
sis. T&F-DFC FusionNet introduces the T-DFC module and F-DFC module
combination layer and the Slices FEM, which can simultaneously capture the
dependencies of different brain regions in the TD and FD between brain regions.
The design of the model fully considers the characteristics of the continuous
reorganization of brain functional connections in ADHD children when perform-
ing cognitive tasks. Through the processing of time series data slices, the es-
tablishment and extraction of brain functional connection pattern information
in different dimensions, etc., the great advantages of T&F-DFC FusionNet are
demonstrated. Experimental results demonstrate that T&F-DFC FusionNet out-
performs traditional machine learning methods and other deep learning models,
achieving high accuracy and robust performance. Additionally, the leave-one-
ROI-out method identifies key brain regions, such as rDLPFC and BA8. In sum-
mary, T&F-DFC FusionNet not only enhances ADHD diagnosis in children but
also provides a reliable framework for identifying biomarkers related to ADHD’s
underlying mechanisms, opening the door to further neuroimaging research and
clinical applications.
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