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Abstract. Semi-supervised learning has received considerable attention
for its potential to leverage abundant unlabeled data to enhance model
robustness. Despite the widespread adoption of pseudo labeling in semi-
supervised learning, existing methods often suffer from noise contamina-
tion, which can undermine the robustness of the model. To tackle this
challenge, we introduce a novel Synergy-Guided Regional Supervision
of Pseudo Labels (SGRS-Net) framework. Built upon the mean teacher
network, we employ a Mix Augmentation module to enhance the unla-
beled data. By evaluating the synergy before and after augmentation,
we strategically partition the pseudo labels into distinct regions. Addi-
tionally, we introduce a Region Loss Evaluation module to assess the
loss across each delineated area. Extensive experiments conducted on
the LA, Pancreas-CT and BraTS2019 dataset have demonstrated supe-
rior performance over current state-of-the-art techniques, underscoring
the efficiency and practicality of our framework. The code is available at
https://github.com/ortonwang/SGRS-Net!

Keywords: Medical image segmentation - Semi-supervised learning -
Pseudo label.

1 Introduction

With the rapid development of deep learning, fully supervised learning segmen-
tation methods, such as the U-Net [I7], and UNeXt [I9] have achieved suc-
cess. However, these methods often depend on a large amount of precisely anno-
tated training data, which can be both expensive and time-consuming to obtain.
Such a dependency constrains the scalability and applicability of medical image
segmentation methods. In recent years, semi-supervised learning has attracted
widespread attention for its potential to utilize fewer labeled data alongside
a wealth of unlabeled data, thereby enhancing the model’s generalization ca-
pability. Numerous semi-supervised medical image analysis methods have been
introduced, including pseudo labels [2], deep co-training [27] [25], deep adversar-
ial learning [8], the mean teacher and its extensions [I8][9] among others. These
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methods effectively leverage both labeled and unlabeled data to develop power-
ful models.

Pseudo labels learning is a widely adopted method. This approach initiates
by training the model on labeled data, then generating pseudo labels for unla-
beled data using predicted probability maps. Subsequently, these pseudo labels
are integrated with the labeled data for further training of the model, aimed at
enhancing the accuracy and generalization ability of the image [7]. Building on
this approach, Shanfu Lu et al. [I0] have introduced two auxiliary decoders into a
network to generate pseudo labels from these auxiliary decoders. Moreover, Luo
et al. [12] have developed the Cross Teaching framework, where the prediction
of one network serves as the pseudo label to directly guide another network in
an end-to-end manner.

While these methods effectively enhance the performance of models, the in-
herent inaccuracy of pseudo labels, when compared to ground truth, remains
a challenge. Indeed, some pseudo labels are of high quality and comparable to
ground truth, yet others may bolster by noise. As iterative training progresses,
this noise has the potential to adversely affect the robustness of the models.
Although directly applying noise-robust loss functions can mitigate the effects
of noise to some extent, in the case of high-quality pseudo labels, endeavoring
to optimize against unnecessary noise suppression may lead to overfitting.

To effectively utilize pseudo labels, we introduce the Synergy-Guided Re-
gional Supervision (SGRS-Net). During training, a Pseudo Label Generation
Module is employed to generate pseudo label. Additionally, we introduce a Mix
Augumentation Module which utilize annotated data to augment unlabeled data.
Following this, our Synergy Evaluation (SE) module allows us to partition pseudo
labels into different regions and then apply Regional Loss Evaluation module
to evaluate the corresponding loss for each region. This strategic approach is
designed to maximize the use of pseudo label while minimizing the impact of
potential noise.

In summary, our contributions are multifaceted: (1) We introduce a Synergy-
Guided Regional Supervision (SGRS-Net) framework for semi-supervised medi-
cal image segmentation. (2) This framework introduces a Pseudo Label Gener-
ation Module, and a Mix Augmentation (MA) module to significantly enhance
the diversity of the unlabeled dataset. (3) We introduce a Synergy Evoluation
(SE) module and a Regional Loss Evaluation (RLE) module, designed to miti-
gate the impact of noise while fully capitalizing on the supervisory signal pro-
vided by pseudo label. (4) Experimental results on the LA, Pancreas-CT, and
BraTS2019 datasets demonstrate significant improvements over previous state-
of-the-art (SOTA) methods, underscoring our framework’s remarkable efficacy
in scenarios with a limited number of labeled images.

2 Method

This study introduces the SGRS-Net for semi-supervised medical image segmen-
tation. For clarity, the notions and notations are summarized in Table
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Fig. 1: Overview of our proposed SGRS-Net.
Notations Descriptions
DL,.GT Labeled Image and correspond Ground Truth
Du,PL Unlabeled Image and correspond Pseudo Label
Dt Image mixed from Dy and Dy,
0s,0r Parameters of the student network and the teacher network
AQ.0 Regions regard as disregarded, consistent, and inconsistent, respectively

Table 1: Summary of mathematical notions and corresponding notations.

Overall architecture design: Fig. [1] illustrates the framework of the SGRS-
Net. Throughout the training, the teacher network implements parameter up-
dates from the student network through exponential moving averages (EMA).
We begin by assessing unlabeled data with the teacher network, obtaining PL.
Subsequently, the Mix Augmentation (MA) module is employed to enhance Dy,
resulting in Dpq. Upon processing by the student network on (Dr, Dy, D),
we derive the corresponding predictions (Pr, Py, Paq). After that, the Synergy
Evaluation (SE) module is employed to evaluate the synergy between P and
P, and partition the Py, into three regions: A, Q, and ©. Finally, the Regional
Loss Evaluation (RLE) module is used to evaluate the losses. Detailed explana-
tions of each module will be provided in the subsequent sections.

Pseudo Label Generation Module: To obtain pseudo label for Dy, this study
adopts a mean teacher framework. The teacher network is utilized to evaluate
the Dy, i.e., P+ = fo,.(Dv), and through a binarization process, the correspond-
ing PL is generated, i.e., PL = ArgMax(Pr).

Mix Augmentation Module: To enhance the diversity of the dataset, meth-
ods such as CutMix [24], which alters local regions, and PolypMix [5], which
targets lesion-specific areas, have shown promising results. However, these tech-
niques may disrupt global pixel-level consistency when evaluating synergistic
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effects. Therefore, we adopt the Mix-Up [20] strategy for data augmentation.
For a pair of samples Dy, and Dy, this process can be formulated as follows:

A = mazx[Beta(a, «),1 — Beta(a, o)) (1)

Dym=A-Dy+(1—-)\)-Dy (2)

where « is a randomly generated hyperparameter. It is noteworthy that our
method primarily focuses on D,,, incorporating Dy, to increase the diversity of
D,,, without the need for additional annotation. Since the coefficient A is mostly
close to 1, the noise artifacts introduced by Mix-Up are minimal and have negli-
gible impact. Therefore, we use the PL corresponding to the D;; as the pseudo
label for D), in the subsequent steps.

Synergy Evaluation Module: To improve the utilization of valuable infor-
mation in pseudo label while mitigating the impact of noise, we introduce a SE
module to divide the pseudo label into three parts: A, ©, and 2, based on their
synergy. Specifically, we begin by assessing the information entropy of P, and
Pat- As higher entropy signals greater uncertainty, we introduce a threshold, 7.
Regions exhibiting entropy above 7 are considered unreliable and are thus cate-
gorized as A. The procedures for this categorization are formulated as follows:

Puy Pam = SoftMax(fos (Dy)), SoftMax(foq (D)) (3)
Ent(p) = — > _p;-logp; (4)

jeC
A = (Ent(Py) > 7) N (Ent(Ppag) > 1) (5)

Where C' represents the number of categories, and p; denotes the probability
of pixels for the j-th category. For regions that are clearly distinguishable with
consistent results and inconsistent categories are identified as consistent and
inconsistent predictions, labeled as €2 and ©, respectively. The specific operations
are formulated as follows:

Ay, Ay = ArgMax(Py), ArgMax(Pag) (6)

Q= (A ©Ap) A (FA), O = (Ay ® Ap) A (FA) (7)

Regional Loss Evaluation Module: After synergy assessment, the predictions
are divided into three segments: A, €2, ©. Subsequently, we conduct a regional
loss evaluation for each category. Initially, for regions A, where a higher level of
uncertainty is noted, the PL within this area is considered more susceptible to
noise. Therefore, this region is excluded from the evaluation process.

Learning from G7: During training, the G7 serves as the gold standard for
Dy, and the loss is evaluated using Ls,,,. Based on the Cross Entropy Loss and
Dice Loss, the specific function is defined as follows:

Ll(oy) == yli,j]-logpli, ] 8)

i€l jeC
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U —1_ ic€UjeC
B SO DY D ST ©
i€l jeC i€l jeC
‘CSUP = ’Cpce(PL, gT) + Epdc(PLv gT) (10)

where U represents all the pixels within G7. The pl[i, j] and y[i, j] denote the
predicted probability and ground truth for the pixel ¢ with class j, respectively.
Learning from 2: For regions identified as €2, characterized by lower entropy
and consistent predictions, we introduce a local consistency supervision loss L,
which learns from unlabeled data by minimizing the difference between the pre-
diction and the PL within Q. This is implemented using Cross Entropy Loss and
Dice Loss. Based on equation [§| and |§|, the L.,y is formulated as:

‘CQ(pa ) ‘Cpce(pa )+E§dc(p7y) (11)

Leon = LEPu, PL) + LL(Ppy, PL) (12)

Learning from O: For regions within ©, where lower entropy is observed,
indicating a degree of stability, yet discrepancies exist in the predicted categories.
This observation suggests that the corresponding PL within this region may
contain noise. To address this issue, we propose a regional noise robust loss
function, denoted as Lypg, designed to mitigate the influence of noise within ©.
The formulation of £Lyg is presented as follows:

Lvelpy) = =D D_[(1 =) - olis ] - og(pli. i) + 5 log(plind)]  (13)

€0 jeC

X Z Zp[l,j} y[l,j]

i€ jeC

o sde(Dy) =1— — — 14

paeP8) = b S R S Syl )
€0 jelC €@ jeC

‘C@(p7 ) ‘Cpsce(p’ >+‘C§)sdc(pa y) (15>

Lyr =L (Pu, PL) + LI (P, PL) (16)

where € and 7 are the smoothing parameter. The p[i, j] and y[i, j] denote the
predicted probability and ground truth for the pixel ¢ with class j, respectively.

2.1 Total Loss Funciton

The proposed SGRS-Net framework aims to learn from both labeled and unla-
beled data, the total loss is thus articulated as:

L= Esup + A (['con + ‘CNR) (17)
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where Ly, Leon and Ly g are defined in equations and respectively.
We integrate A(t), a widely utilized time-dependent Gaussian warming-up func-
tion [6], to modulate the balance between losses at different training stages,
defined as:

(=5(1- =) t<t
At)y=4¢ e < twarm 18
( ) {1 t Z twarm ( )

where t represents the current training step, and ¢4 denotes the maximum
warm training step.

3 Experiments and Results

3.1 Experimental Details

Dataset: The SGRS-Net was evaluated on three datasets: theLA dataset [23]
with 100 3D GE-MRIs (80 samples for training and 20 for testing following [21]),
the Pancreas-CT dataset [3] with 82 CT volumes (62 samples for training and
20 for testing following [21]]), and the BraTS2019 dataset [14] with 335 MRIs
(250 samples for training, 25 samples for validation and 60 for testing).
Implementation Details: Our framework was developed using PyTorch and
executed on an Nvidia RTX 3090 GPU. During training, the patch size was set to
112 x 112 x 80 for LA dataset and 96x 96 x 96 for Pancreas-CT and BraT'S2019
dataset. For testing, the strides is 18 x18 x4 for LA dataset and 16x16x16 for
Pancreas-CT and BraTS2019 dataset. We selected the V-Net [I5] as the back-
bone to ensure a fair comparison. The SGRS-Net framework was trained for
15k iterations for LA and Pancreas-CT dataset and 60k for BraTS2019 dataset,
employing the SGD optimizer with a momentum 0.9 and weight decay set to
le-4. The initial batch size, learning rate, 7, and € were set to 4, le-2, 0.296, 20,
respectively. Four commonly used metrics are employed to assess the segmenta-
tion results: Dice, Jaccard (Jac), the average surface distance (ASD), and the
95% Hausdorff Distance (HD).

3.2 Result on LA, Pancreas-CT and BraTS2019 dataset

Table[2]details the performance of our model against eight recent semi-supervised
learning methods across the three dataset, alongside the fully supervised V-Net
model at various ratios to delineate the lower and upper bounds of performance.
Remarkably, our model achieved the best results across nearly all four metrics.
Particularly impressive is that on the LA and Pancreas-CT dataset, our model
achieved Dice scores of 89.70% and 77.20% with 5% labeled data, representing a
2.36% and 13.55% improvement over the previously best-performing algorithm
with the same amount of labeled data. Even more striking, with just 5% labeled
data, the Dice score of our model exceeds that of comparative algorithms with
10% labeled data. With 10% labeled data, our approach attained Dice scores of
90.76% and 80.55%, approaching the upper bounds.
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Figure [2] provides a visual comparison of segmentation results from 2D and
3D perspectives alongside the corresponding ground truth (GT) with 5% labeled
data. It clearly demonstrates that our SGRS-Net excels in segmentation accu-
racy, particularly in 2D views, where our outcomes are notably closer to the GT
than those of competing methods. These findings underscore the efficacy of our
framework in leveraging unlabeled data to improve performance.

Table 2: Quantitative comparison with eight SOTA methods on the LA and
Pancreas-CT dataset.

Method Scans used LA Pancreas-CT BraTS2019

Lb Unlb|Dicet Jact HDJ ASDJ| Dice Jac HD ASD| Dice Jac HD ASD
V-Net 5% 0 [52.55 39.60 47.05 9.87 |29.32 19.61 43.67 15.42|74.28 64.42 13.44 2.60
V-Net 10% 0 |78.57 66.96 21.20 6.07 |54.94 40.87 47.48 17.43|78.67 68.75 10.44 2.23
V-Net 100% 0 |91.62 84.60 5.40 1.64 |83.76 72.48 4.46 1.07|88.58 80.34 6.19 1.36
DTC [11[ 81.25 69.33 14.90 3.99 |47.57 33.41 44.17 15.31|74.21 64.89 13.54 3.16
URPC [13] 82.48 71.35 14.65 3.65 |45.94 34.14 48.80 23.03|78.74 68.20 17.43 4.51
SS-Net [22] 86.33 76.15 9.97 2.31 [41.39 27.65 52.12 19.37|78.03 68.11 13.70 2.76
MC-Net+ [21] 82.07 70.38 20.49 5.72 |32.45 21.22 58.57 24.84|78.69 68.38 16.44 4.49
CAML [4] 5% 95%|87.34 77.65 9.76 2.49 |35.18 23.63 43.58 20.39|79.34 69.64 11.02 2.36
Co-BioNet [161 84.30 74.67 8.33 2.38 |52.82 39.20 29.46 6.16 |73.27 63.12 14.37 1.90
BCP [1] 88.02 78.72 7.90 2.15 |45.08 34.72 39.39 11.23|79.30 68.89 12.00 1.94
MCF [20] 83.34 72.20 16.65 5.46 |63.65 49.72 18.06 3.97|71.82 62.60 14.66 3.96
Ours 89.70 81.40 6.68 1.75|77.20 63.45 12.34 3.81(80.62 70.21 14.58 3.64
DTC [11] 87.51 78.17 8.23 2.36 |66.58 51.79 15.46 4.16|82.74 72.74 11.76 3.24
URPC [13] 85.01 74.36 15.37 3.96 | 73.53 59.44 22.57 7.85|84.16 74.29 11.01 2.63
SS-Net [22‘\ 88.43 79.43 7.95 2.55 |73.44 58.82 12.56 2.91|82.00 71.82 10.68 1.82
MC-Net+ [21] 88.96 80.25 7.93 1.86 |70.00 55.66 16.03 3.87|79.63 70.10 12.28 2.45
CAML [4] 10% 90% [89.62 81.28 8.76 1.85 |71.65 56.85 14.87 2.49 |81.58 72.31 10.30 1.94
Co-BioNet [16] 89.20 80.68 6.44 1.90 |77.89 64.79 8.81 1.39|75.22 65.32 13.56 1.94
BCP [1] 89.62 81.31 6.81 1.76|73.49 58.60 16.65 2.22|84.35 75.01 10.95 2.60
MCF [20] 87.67 78.42 9.16 2.79 |65.39 51.43 13.85 2.39|79.28 69.08 12.43 3.58
Ours 90.76 83.13 6.08 1.87 |80.55 67.88 6.00 2.50 |85.67 76.05 9.33 2.76

3.3 Ablation study

Effect of the components: The ablation experiments are conducted on the
LA dataset. We first conduct an ablation study to evaluate the effects of the
MA module and the SE&RLE module. We use the pseudo labels generated by
the Mean-teacher framework as the baseline. The results are detailed in Table [3
These results underscore that the integration of the MA module leads to a signif-
icant improvement. Moreover, integrating the SE&RLE module leads to further
improvements. With 5% labeled data, the Dice score progresses from 88.61% to
89.76%. This demonstrates the effective use of pseudo labels by the SEM&RLE
modules and underscores their crucial role in enhancing model accuracy.

Effect of the loss functions for distinct regions in ): In this paper, we
used L., and Lyg to evaluate losses within €2 and ©, while excluding the eval-
uation of regions within A. To validate the rationale behind the RLE module,
we conducted ablation studies on the loss functions for each region, as shown in
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Fig.2: Visualization of the segmentations results from different methods. The
red lines denote the boundary of GT and the green lines denote the boundary
of predictions.

Table 3: Effect of the components (upper) and effect of the loss function for
different regions (lower).

Components Scans used Metrics
Base MA SE&RLE | Lb Unlb [Dicet Jact HDJ] ASDJ
v 87.45 77.95 8.95 2.09
v v 4(5%) 76(95%)| 88.61 79.65 11.09 2.84
v v v 89.72 81.42 8.46 2.42

Regions Scans used Metrics
Q (C) A Lb  Unlb |Dicet Jact HDJ ASDJ
Leon  Leon 89.04 80.32 7.45 1.97
LNr  Leon 88.14 79.02 12.95 2.81
Lnr LNR 88.76 79.96 7.39 1.96
Lnr LNR LNR 4(5%) 76(95%) 88.61 79.67 8.52 2.21
Leon  Leon Lecon 88.61 79.65 11.09 2.84
Leon LNRr 89.70 81.40 6.68 1.75

Table [3] The results indicate that excluding the A region improves the model’s
robustness. Traditional methods that used L., for the entire )’ achieved a Dice
score of 88.61%. In contrast, our method achieved better performance with a
Dice score of 89.70%, underscoring the effectiveness of the RLE module.
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4 Conclusion

Semi-supervised learning has garnered widespread attention for its ability to uti-
lize abundant unlabeled data to enhance robustness. Despite the popularity of
pseudo labels strategy in semi-supervised learning, the effectiveness of existing
methods can be diminished by noise contamination, which undermines model
robustness. In response, we introduce SGRS-Net, which partitions the pseudo
labels into distinct regions and evaluates the loss within each identified region
using the proposed region-based loss evaluation module. Extensive experiments
conducted on the LA, Pancreas-CT, and BraTS2019 dataset demonstrate su-
perior performance over current state-of-the-art techniques, underscoring the
efficiency and practicality of our framework.
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