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Abstract. Extending deep learning models to out-of-distribution (o.o.d.)
data remains a persistent challenge, especially in domains like med-
ical imaging with restricted data availability and limited data shar-
ing. This challenge is particularly evident in pulmonary nodule detec-
tion, as the model struggles to distinguish nodules from the surround-
ing normal tissues across different data distributions. To address this
issue, we propose a Distributionally Regularized Mamba Network (DRM-
Net). Inspired by Mamba, we propose a Feature-Augmented State-Space
module that unifies pulmonary nodule features to effectively distinguish
nodules from surrounding confounding tissues. Furthermore, a Region-
Aware Distribution Alignment module is elaborately introduced to re-
duce disparities in feature distributions between domains. We construct
a pulmonary nodule detection dataset, named Generalization for Pul-
monary Nodule Detection (GPND), comprising diverse domains, includ-
ing private and well-known public datasets. Extensive experiments con-
ducted on GPND demonstrate that DRMNet outperforms state-of-the-
art domain generalization methods. The code is available at https:
//github.com/TzhongBoyyy97/DRMNet.

Keywords: Pulmonary Nodule Detection · Nodule Dataset · Domain
Generalization

1 Introduction

Lung cancer has a high mortality rate, but early CT screening can reduce deaths.
Existing pulmonary nodule detection algorithms [8, 14, 17, 22, 23] overlook com-
mon out-of-distribution (o.o.d.) scenarios in clinical practice (see Fig. 1). To
tackle domain shifts in medical imaging, domain generalization (DG) enhances
model generalizability to unseen target domains by leveraging information from
one or more source domains [19,28]. DG approaches typically involve data aug-
mentation [6, 24, 25], meta-learning [3, 5, 9], or learning domain-invariant fea-
tures [2, 26,27].

While existing methods show promise, limited research has been dedicated to
DG in pulmonary nodule detection. Unlike other lesions, pulmonary nodules are
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Fig. 1: Comparsion of PN9, LUNA16, PONSD and GGO. The first row repre-
sents some nodule samples, and the second row indicates the diameter distribu-
tions in four datasets. Four subsets introduce clear domain shifts.

intertwined with blood vessels and other normal tissues in imaging, making them
difficult to identify. Therefore, capturing long-range contextual representations
is essential for distinguishing spherical nodules from tubular vascular structures.
Recently, Mamba [4] has demonstrated effectiveness in capturing long-range de-
pendencies in tasks such as image classification and segmentation while avoiding
excessive GPU memory usage like Transformers. This capability could enhance
detection models by improving the extraction of domain-invariant features from
pulmonary nodules.

In this paper, we introduce a Generalization for Pulmonary Nodule De-
tection (GPND) dataset, comprising publicly available subsets (LUNA16 [16]
and PN9 [14]) and internal subsets (PONSD and GGO), each characterized by
unique imaging qualities and nodule characteristics. We further propose a Dis-
tributionally Regularized Mamba Network (DRMNet), integrating a U-shaped
architecture with Feature-Augmented State-Space (FASS) modules to capture
both local fine-grained features of pulmonary nodules and long-range correlation
between nodules and vasculars. Additionally, DRMNet incorporates a Region-
Aware Distribution Alignment (RADA) module to constrain the latent feature
distribution to a predefined prior distribution. This enables the alignment of
learned pulmonary nodule feature distributions between the source domains and
generalizes them to the target domain for detection.

Our main contributions are as follows:

• We propose the FASS module to incorporate global features by leveraging
the spatial relationship between pulmonary nodules and vascular structures
to integrate global features.
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Fig. 2: An overview of the proposed DRMNet. DRMNet is an end-to-end neural
network with two key components: the FASS and RADA modules.

• We introduce the RADA module further to align pulmonary nodule features
from different source domains, enabling effective generalization to the target
domain.

• We construct a domain generalization dataset GPND for pulmonary nodule
detection. It contains two private datasets and two public datasets.

2 Methods

2.1 Problem Formulation

Let X ∈ RD×H×W×C represent the input (feature) space, Y ∈ R denote the
labels space, B ∈ R6 denote the space of bounding boxes. One domain is defined
as a joint distribution PXY on X ×Y. During the training process, there are K

datasets {Sk}Kk=1 available, where Sk =
{
xk
n,
{
ykmn, Boxk

mn

}Mn

m=1

}N

n=1
with index

n includes input xk
n ∈ X and Mn number of discrete labels ykmn ∈ Y and their

corresponding bounding boxes Boxk
mn ∈ B. The goal of the proposed model is

to learn a mapping X → (Y × B)U , that generates U accurate proposals from a
single input xT sampled from an unseen domain.

2.2 Architecture of the DRMNet

As shown in Fig. 2, our proposed DRMNet consists of three parts: the U-shaped
backbone with FASS modules to capture information from lung tissues, the
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RADA module to minimize KL divergence between source domains, and the
heads used to generate the proposals. The loss function of the total model is:

Ltotal =
∑
n,k

Lcls + Lreg + Lrank +KL(p(Z | X ) ∥ N ∼ (0, 1)), (1)

where Lcls denotes the Focal Loss and Lreg denotes the Smooth L1 Loss, Lrank

is defined by ∂Lrank/∂Z = UV T , where U and V are obtained from Singular
Value Decomposition (SVD). Lrank and KL(·) will be discussed in detail in the
RADA module.

2.3 Feature-Augmented State-Space

In pulmonary nodule detection, vessels and bronchioles usually appear as con-
tinuous tubular structures on chest CT. Although malignant pulmonary nodules
are usually near blood vessels, their imaging features often appear isolated and
spheroidal. These subtle differences require identification across multiple slices.
Extracting global features mirrors a physician’s approach—analyzing multiple
slices to distinguish nodules from lung tissues. An optimal model should integrate
knowledge from diverse domains and adapt to novel distributions, efficiently en-
coding, retrieving, and adjusting information for precise decision-making [15].
Existing detectors [14,21,22] are fundamentally based on CNNs and thus strug-
gle to store and access the large-scale information needed at each step.

The Mamba is inspired by the continuous system that maps a 1-dimensional
function xt → yt ∈ R and can be denoted as:{

h
′
(t) = Qh (t) +Rx (t)

y (t) = Sh (t)
, (2)

where the evolution matrix Q ∈ RN×N and projection matrices R ∈ RN×1, S ∈
R1×N are its parameters, and h (t) represents a hidden state. The FASS module
is proposed to acquire the advantage of U-Net and Mamba for global and local
contexts in pulmonary nodule detection. As shown in Fig. 2, each FASS module
contains Residual blocks followed by Instance Normalization and Mamba blocks.
The Mamba block consists of two streams. The first stream expands features by a
linear layer, 1D convolution layer, SiLU function, and the SSM layer. The second
branch also expands features by a linear layer and SiLU function. Then, the
features from the two streams are integrated and transposed to the original size.
Unlike other Mamba works [10, 29], we discard the patch embedding operation,
as the detection performance is highly susceptible to the scanning patch order.

2.4 Region-Aware Distribution Alignment

The information extracted from different domains contains a large amount of
specific features related to pulmonary nodules. However, due to variations in
distribution between these domains and the significant morphological differences
of pulmonary nodules, the learned feature representation still suffers from noise
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interference. We further introduce a RADA module to regularize the latent fea-
ture space among multiple source domains and match the distribution of fea-
tures to a distribution prior. Inspired by the linear dependency algorithm [11],
a feature space zkn from one domain can be represented by other domains as
zkn = α1z

1
n + · · ·+ αk−1z

k−1
n + αk+1z

k+1
n + · · ·+ αKzKn , where {α1, αk, . . . , αK}

denotes the parameters for each feature space, αk ≥ 0 and ∥αk∥ ≤ M , M means
a Lipschitz constant. We theoretically facilitate the Kullback-Leibler (KL) di-
vergence to demonstrate that when the latent features in the source domain
approach a normal distribution, the latent features in the target domain will
also tend towards a normal distribution, thereby reducing differences between
the source and target domain features. In detail, the KL divergence can be for-
mulated as KL(p(Z | X ) ∥ N ∼ (0, 1)), where Z denotes the latent features. The
distribution on latent variables can be defined as pi(z), i = {1, 2, . . . ,K, T}, the
normal prior N ∼ (0, 1) as pG(z), where K,T represent the number of source do-
main and target domain, respectively. Then, the latent distribution of a sample
xT
iT

from the target domain is defined as p(zTnT
| xT

nT
) =

∑K
k=1αkp(z

k
nK

| xk
nK

),
which follows the normal distribution. By leveraging the x ≥ log (1 + x) and∫
pT (z)dz =

∫
pk(z)dz = 1, we are able to derive an upper bound:

KL(pT (z) ∥ pG(z)) =

K∑
k=1

αk

∫
z

pk(z) log
pT (z)

pG(z)
dz

=

K∑
k=1

αk

∫
z

pk(z) log
pk(z) [1 + (pT (z)/pk(z)− 1)]

pG(z)
dz

=

K∑
k=1

αk

∫
z

pk(z){log
pk(z)

pG(z)
+ log [1 + (pT (z)/pk(z)− 1)]}dz

≤
K∑

k=1

αk

∫
z

pk(z)(log
pk(z)

pG(z)
+ pT (z)/pk(z)− 1)dz

≤
K∑

k=1

αk

∫
z

pk(z) log
pk(z)

pG(z)
dz

≤
K∑

k=1

αkKL(pk(z) ∥ pG(z)).

(3)

The equation above indicates that when KL(pk(z) ∥ pG(z)) is minimized, the
KL(pT (z) ∥ pG(z)) for target domain will also be minimized. Given an input
X =

{
xk
i

}
sampled from the source domain, we can obtain its feature map Z

through the posterior distribution p(z | x) parameterized by FASS module. To
exploit the intrinsic feature of positive anchors from multiple source domains and
reduce the impact of noise on domain-invariant feature alignment, we flatten Z
as 1D Z and design rank regularization rank(Z) by using SVD as Z = USV T ,
where S is a diagonal matrix containing all the singular values. The previous
linear dependency methods [7, 12] are tailored for classification tasks, relying
on predefined terms associated with categories to optimize the calculation of
singular values. In contrast, our approach, designed for detection tasks, directly
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utilizes positive anchor boxes for singular value computation, reducing additional
computation.

3 Experiments

3.1 GPND Dataset

The GPND dataset comprises four subsets sourced from public datasets PN9 and
LUNA16, along with private datasets PONSD and GGO. The PONSD dataset
focuses on postoperative patients, emphasizing small nodes. The GGO dataset
includes cases with ground glass opacity (GGO), a high-risk factor often missed
on CT scans. These private datasets, sourced from a top-tier Chinese hospital,
undergo stringent desensitization and quality checks. The LUNA16 dataset only
labeled nodules larger than 3 mm, and PN9 labeled nodules of varying sizes and
morphologies, which are multidomain.

3.2 Evaluation Metrics and Implementation Details

The performances of detection systems are evaluated by the Free-Response Re-
ceiver Operating Characteristic (FROC) [16], which is employed in follow-up
research for pulmonary nodule detection. Detection performance is quantified
based on the mean recall achieved at pre-defined false positive rate levels per
scan (FP/scan), specifically at 1/8, 1/4, 1/2, 1, 2, 4, and 8 on average. We com-
pute the 95% confidence interval using bootstrapping with 1000 bootstraps. The
four subsets are all randomly split into 7:1:2 for training, validation, and testing.

We conduct experiments on an Ubuntu server with 2 Nvidia 4090 GPUs
(24G) using CUDA 12.3 and PyTorch 2.1.1. Additionally, we use SANet [14] as
the backbone, and we employ a Stochastic Gradient Descent (SGD) to minimize
costs. The base learning rate is established at 0.01, along with momentum and
weight decay coefficients of 0.9 and 1× 10−4, respectively. Training involves 40
total epochs, with the learning rate decreasing to 0.001 after 32 epochs and
0.0001 after 36 epochs.

3.3 Effectiveness of DRMNet

Comparsion with State-of-the-Art DG methods We first compare DRM-
Net with state-of-the-art DG methods, including LDDG [7], DGER [27], AIDA
[6], SMDD [5], and STDR [18]. We conduct four experiments for each method,
with one subset of the test set chosen as the target domain and the remaining
three subsets of the training set serving as the source domains. The DeepAll
refers to the absence of any domain generalization method. The results, pre-
sented in Table 1, are obtained by tuning hyperparameters extensively. Notably,
all DG methods outperform DeepAll, with DRMNet achieving superior perfor-
mance by integrating effective feature learning and domain alignment, consider-
ing global and local information. Specifically, DRMNet significantly outperforms
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Table 1: Domain Generalization results for pulmonary nodule detection (%).
Each subset is treated as the target domain in turn, with the remaining three
as source domains. Average denotes the mean recall across all four trials.

Method Target 0.125 0.25 0.5 1 2 4 8 FROC

DeepAll

PN9 5.40 8.00 12.27 19.15 26.56 35.29 46.68 21.91
GGO 24.89 35.52 51.06 66.69 80.55 89.1 93.65 63.06

PONSD 1.83 4.15 10.26 24.34 39.41 54.8 64.84 28.52
LUNA16 44.93 56.48 66.19 72.11 75.67 81.85 84.98 68.89
Average 19.26 26.04 34.94 45.57 55.55 65.26 72.54 45.59

LDDG [7]

PN9 8.92 12.92 21.98 30.94 37.04 45.99 56.06 30.55
GGO 39.08 56.57 69.55 77.85 86.63 91.22 95.55 73.78

PONSD 3.29 6.44 12.61 24.66 37.51 46.97 58.38 27.12
LUNA16 45.01 57.79 68.92 73.38 77.45 80.72 84.21 69.64
Average 24.08 33.43 43.26 51.71 59.66 66.22 73.55 50.27

DGER [27]

PN9 6.00 12.01 21.31 30.91 40.07 49.24 57.49 31.00
GGO 38.82 49.62 63.25 76.75 87.59 92.56 94.32 71.85

PONSD 1.11 3.23 9.39 18.69 35.58 50.29 64.22 26.07
LUNA 37.23 49.69 60.43 68.31 73.15 78.26 81.72 64.11
Average 20.79 28.64 38.59 48.66 59.1 67.58 74.44 48.26

AIDA [6]

PN9 7.18 14.37 23.77 34.79 45.45 53.88 62.3 34.53
GGO 51.15 58.46 71.43 82.94 90.78 93.85 95.97 77.80

PONSD 1.37 5.36 14.49 28.82 44.09 55.82 67.69 31.09
LUNA 46.79 54.71 60.53 67.83 75.48 80.29 85.26 67.27
Average 26.62 33.22 42.55 53.60 63.95 70.96 77.8 52.67

SMDD [5]

PN9 8.07 11.75 16.75 26.11 38.88 47.58 54.04 29.02
GGO 28.96 43.53 58.42 74.55 82.17 88.44 92.84 66.99

PONSD 1.92 3.85 10.39 23.54 40.70 54.57 65.88 28.69
LUNA 55.83 61.36 70.04 74.81 79.83 81.56 84.73 72.59
Average 23.69 30.12 38.90 49.75 60.40 68.04 74.37 49.32

STDR [18]

PN9 13.11 18.14 25.31 32.11 43.05 51.17 56.90 34.26
GGO 36.77 50.76 64.15 77.24 86.93 89.84 92.52 71.17

PONSD 1.34 4.83 12.61 22.90 39.54 56.02 67.28 29.22
LUNA 48.25 56.55 60.85 68.10 74.05 83.40 88.04 68.47
Average 24.86 32.57 40.73 50.08 60.90 70.11 76.20 50.78

DRMNet

PN9 12.66 19.16 29.16 35.84 42.95 51.22 59.90 35.84
GGO 68.63 75.27 80.44 87.66 90.87 94.07 95.97 84.70

PONSD 3.24 9.79 17.9 28.63 42.96 53.61 61.33 31.07
LUNA 51.96 62.85 69.09 75.24 79.19 82.70 87.91 72.70
Average 34.12 41.77 49.14 56.84 63.99 70.40 76.28 56.08

other methods in recall when FP/scan is less than 4, an advantage deemed clini-
cally significant. Our findings indicate that all methods generalize better to GGO
and LUNA16 but struggle with PN9 and PONSD, likely due to differences in
nodule sizes and morphologies between datasets. By contrast, GGO and LUNA16
tend to have larger nodule diameters and more uniform nodule types, reducing
source-target domain discrepancies. Qualitative results, depicted in Fig. 3, high-
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FASS LR KL Average FROC
45.59

✓ 52.15
✓ ✓ 53.31
✓ ✓ 53.10

✓ ✓ 49.67
✓ ✓ ✓ 56.08

Table 2: Ablation Study on the key
components of DRMNet (%).

Methods Average FROC
VMamba [29] 52.26
UMamba [13] 54.60

SegMamba [20] 53.69
EMNet [1] 53.84

DGMamba [10] 55.15
Ours 56.08

Table 3: Ablation Study on differ-
ent methods based on Mamba (%).

GT AIDADGER SMDD LDDG DRMNetDeepAll

PN9

GGO

PONSD

LUNA16

STDR

Fig. 3: Visualization results of different domain generalization methods. The
first row to the fourth row shows the results on different target domains. “-”
indicates the method does not detect the corresponding nodule.

light the ability of our model to generate more accurate predicted bounding
boxes compared to others.

Ablation Studies In Table 2, we verify the effectiveness of two modules. Specif-
ically, we conduct separate experiments on the Low-Rank (LR) and KL com-
ponents of the RADA module. The experimental results show that combining
all the modules leads to the best performance. Furthermore, we investigate the
influence of the FASS module by removing it from the architecture. The re-
sult indicates a noticeable degradation in the FROC performance, underscoring
the significance of extracting global information across multiple slices. Overall,
combining these components enhances the performance, thus highlighting the
importance of both FASS and RADA modules. Furthermore, Table 3 presents
the performance of other Mamba-based methods across datasets, highlighting
the superiority of our approach.
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4 Conclusion

In this paper, we propose a DRMNet to address domain generalization in pul-
monary nodule detection. First, we design the FASS module to extract global
information across slices, memorizing correlations about pulmonary nodules at
the feature level. Next, a RADA module is introduced to reduce discrepancies be-
tween domain feature distributions. Extensive experiments on the GPND dataset
derived from real clinical data and publicly available benchmark datasets demon-
strate the effectiveness and superiority of our proposed method.
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