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Abstract. Tumor grading and Isocitrate Dehydrogenase (IDH) status
are key prognostic biomarkers. Transformer-based methods are widely
applied in glioma segmentation and diagnosis, but challenges still exist
due to the tumor’s heterogeneity and the computational burden of Trans-
formers. We propose a multi-task network called MTamba for glioma
segmentation, IDH genotyping, and grading. We design Tetra-oriented
Mamba to perform global information interaction from different orien-
tations in MRIs for segmentation. We design a T2-FLAIR mismatch
feature extraction module to explore the mismatch features between T2
and FLAIR images at different depths to enhance diagnosis. We pro-
pose a channel-space Siamese Mamba fusion module to fuse T2-FLAIR
mismatch features with multimodal MRI features from the segmentation
encoder for diagnosis. Finally, we apply an uncertainty loss optimization
method to jointly optimize glioma segmentation, IDH genotyping, and
grading. We validate MTamba on the publicly available UCSF-PDGM
and BraTS2020 datasets, and experimental results show that MTamba
outperforms existing multi-task learning methods. The code for MTamba
is available at https://github.com/xhwv/MTamba.
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1 Introduction

Gliomas are common and deadly brain tumors. According to the WHO classifi-
cation, survival rates and treatment responses are closely linked to isocitrate de-
hydrogenase (IDH) mutation status and tumor grade [20]. Traditionally, genetic
information is obtained through biopsy or surgery, which can delay treatment
and increase metastasis risk. In contrast, multimodal MRI offers non-invasive,
complementary information, making it a promising alternative [8].

Transformers are commonly used in visual tasks, but their computational
complexity limits their use in medical image analysis. State-space models (SSMs),
⋆ means the corresponding author.
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especially the Structured State Space (S4) model, offer an efficient alternative [9].
The Tri-orientated Mamba (ToM) in Segmamba performs well in interacting with
3D features across spatial orientations [22], but struggles with channel and long-
range dependencies between distant slices. Improving Mamba’s ability to capture
long-range dependencies could enhance global modeling of medical images.

The features extracted from the glioma segmentation encoder contain infor-
mation about the tumor’s edges and location, which is useful for prognosis [4, 18,
7, 23]. The incidence of IDH mutations is approximately 12% in WHO grade 4
gliomas and nearly 60% in grade 3 gliomas, indicating a complementary relation-
ship between IDH genotyping and grading [2]. Thus, performing segmentation,
IDH typing, and grading simultaneously may be an efficient strategy.

T2-FLAIR mismatch signals are vital for glioma IDH genotyping and grad-
ing [11]. Gliomas typically show hyperintensity on T2 and hypointensity on
FLAIR images. IDH-mutant and lower-grade gliomas are often linked to mis-
match signals [14]. Previous methods rely on T2-FLAIR subtraction, and it is
hard to capture subtle inter-modality differences [24, 6]. Introducing attention
can help models focus on key regions and capture relationships between modali-
ties. T2-FLAIR mismatch signals are not always present in IDH-mutant gliomas,
and combining them with multimodal MRI features is essential for diagnosis.

This paper proposes MTamba, a multi-task network integrated with Mamba,
designed to perform glioma segmentation, IDH genotyping, and grading simul-
taneously. Our main contributions are summarized as follows:

1) We propose the Tetra-orientated Mamba (TeoM) as the core module of
MTamba to enhance the exploration of global information by interacting with
sequences flattened from 3D features in four orientations.

2) We design the T2-FLAIR Mismatch Feature Extraction Module, which ad-
justs the focus areas on T2 and FLAIR images using multi-scale share-weighted
convolutions, capturing shallow T2-FLAIR mismatch features. We use a TeoM-
based feature extractor to explore deep T2-FLAIR mismatch features.

3) We design a channel-spatial siamese mamba fusion module, performing
global interaction of T2-FLAIR mismatch and multimodal MRI features across
channel and spatial levels, enhancing the expressiveness of fused features.

2 Methodology

As shown in Fig.1, MTamba consists of components: 1) Glioma Segmentation
Module: We design the Tetra-oriented Mamba (TeoM) to model global features
and segmentation. 2) T2-FLAIR Mismatch Feature Extraction Module: We de-
sign shallow and deep mismatch extraction modules for T2-FLAIR mismatch
features. 3) Channel-Spatial Siamese Mamba Fusion Module: We fuse T2-FLAIR
mismatch features with features from the segmentation module for diagnosis.

2.1 Glioma Segmentation Module

Tumor region information is vital for diagnosis. As shown in Fig.1(a, b), we
use SegMamba as the backbone for segmentation. We replace tri-orientated
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Fig. 1: Overall Pipeline of the Proposed MTamba.

Mamba (ToM) with Tetra-oriented Mamba (TeoM) in the encoder and keep
the convolution-based decoder. We obtain segmentation outputs and encoder
outputs ymri as multimodal MRI features during segmentation.

Fig. 2: The Architecture of the Tetra-orientated Mamba.

Tetra-orientated Mamba: The ToM in SegMamba has limitations in cap-
turing long-range dependencies between channels and distant slices. As shown
in Fig.2, we propose TeoM, which models global features in four orientations:
forward, reverse, channel-reverse, and cross-slice. The forward and reverse in-
teractions are consistent with ToM. Channel-reverse interaction captures de-
pendencies by reversing the channel. Unlike ToM’s inter-slice interaction, which
gradually scans the slices, TeoM’s cross-slice interaction alternately scans the
first and last slices, then progressively moves toward the middle slices, enabling
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exploration of dependencies between distant slices. TeoM is expressed as:

FTM (x) =
∑

N∈{f,r,cr,cs}

Wmamba(xN ), (1)

where Wmamba is Mamba layers. The xf , xr, xcr, xcs are input features flattened
in forward, reverse, channel-reverse, and cross-slice orientations.

Large-Kernel Gated Convolution Block: SegMamba uses feature-level un-
certaint estimation (FUE) with point convolutions to fuse features from encoders
(xen) and decoders (xde), making it hard to explore their relationships. We pro-
pose a Large Kernel Gated Convolution Block (LGCB), which fuses xen and xde

at multi-scales using xatt derived from large receptive convolutions:

xatt = σ(β(W 5
g (xen)) + β(W 5

g (xde))), (2)

where W 5
g is a grouped convolution of kernel size 5, σ is the Leaky ReLU, and

β is batch normalization. Point convolution and Sigmoid are applied to yatt to
generate attention coefficients, which are used to weight xen and xde. Finally,
the weighted features are concatenated to produce the output of LGCB.

ylgcb = (ρ(Wp(xatt))× xen)⊕ (ρ(Wp(xatt))× xde), (3)

where Wp is pointwise convolution, ρ denotes the Sigmoid function, × refers to
element-wise multiplication, and ⊕ represents channel concatenation.

2.2 T2-FLAIR Mismatch Feature Extraction Module

Shallow Mismatch Extraction: Directly subtracting T2 and FLAIR images
will treat all regions equally, missing key mismatch information. Thus, we first
use average and max pooling to explore their local context separately.

xp
i = Wp(Pavg(xi)⊕ Pmax(xi), i ∈ {t2, f lair}) (4)

where Pavg and Pmax are average and max pooling, respectively. We use multiple
shared-weight multi-scale convolutional blocks (MSCB) to explore complemen-
tary information between xp

t2 and xp
flair. The process of MSCB is shown as:

Fn
m(xp

i ) = Wp(β(w11n(w1n1(wn11(x
p
i )))⊕ wn1n(w1nn(wnn1(x

p
i )))⊕ wnnn(x

p
i ))),

(5)
where wnnn are convolutions with a kernel size of n × n × n. We weight the
T2 and FLAIR images with share-weighted MSCBs and then subtract them to
obtain the output of the shallow mismatch extraction module (SMEM):

ysmem = ρ(F 7
m(F 5

m(F 3
m(xp

t2))))× xt2 − ρ(F 7
m(F 5

m(F 3
m(xp

flair))))× xflair, (6)
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Fig. 3: The Architecture of the Channel-Spatial Siamese Mamba Fusion Module

Deep Mismatch Extraction: We use the same structure as the segmentation
encoder for feature extraction on xsmem and obtain T2-FLAIR mismatch fea-
tures ymis as the output of the Deep Mismatch Extraction Module (DMEM).

2.3 Channel-Spatial Siamese Mamba Fusion Module

We propose the Channel-Spatial Siamese Mamba Fusion Module (CSSMF) to
fuse ymri and ymis at channel and spatial levels. Specifically, we first add ymri

and ymis, then use depthwise separable convolutions (DSC) to capture local
information, and reshaped to the shape (B,L,C):

yb = β(FB,L,C
reshape(Wdsc(xmri + ymis))), (7)

where Wdsc is the depthwise separable convolution, FB,L,C
reshape denotes reshaping

the feature map from (B,C,H,W,D) into the shape (B,L,C). Next, we input yb
into the Channel-Spatial Siamese Mamba (CSSM) block, where we enhance the
yb across channel and spatial levels. The enhanced features are then processed
by the share-weighted TeoM to explore global contextual relationships:

ycssm = FTM (yb)+F l
f (FTM (F l

f (yb)))+F c
f (FTM (F c

f (yb)))+F lc
f (FTM (F lc

f (yb))),
(8)

where F l
f , F c

f , and F lc
f are flipping in spatial, channel, both spatial and channel

dimensions, respectively. Then, we reshape ycssm back to the shape (B,C,H,W,D)
and use DSC to enhance features. Finally, we obtain the output of CSMMF by
performing pooling along the channel and flattening, which is expressed as:

ycssmf = Fflatten(P
c
avg(Wdsc(F

B,C,H,W,D
reshape (ycssm)))), (9)

where P c
avg is average pooling along the channel, and Fflatten denotes flattening.

The fused feature ycssmf is used for IDH genotyping and grading.
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3 Experiments and Results

3.1 Dataset

As shown in Tab.1, we use UCSF-PDGM and BraTS2020 datasets [3, 1]. Each
sample includes T1, T2, T1CE, and FLAIR images, with their segmentation,
IDH status, and grades [18]. 1) For UCSF-PDGM, we split data 8:2 for training
(15% for validation) and testing. 2) We use the BraTS2020 training set and
validation set for training (15% for validation) and testing, respectively.

Table 1: Summary of the datasets used in this study.
UCSF-PDGM BraTS2020

Training Testing Training Testing

Subject n 394 99 148 70
Grade
Lower-Grade (2, 3) 77 [20%] 23 [23%] 64 [43%] 42 [60%]
Higher-Grade (4) 317 [80%] 76 [77%] 84 [57%] 28 [40%]

IDH status
Wildtype 313 [79%] 77 [78%] 91 [61%] 38 [54%]
Mutant 81 [21%] 22 [22%] 57 [39%] 32 [46%]

3.2 Implementation Details

We conduct experiments on A100 GPUs using Ranger [21] as the optimizer,
with a batch size of 2 and an initial learning rate of 0.0002 that decays during
training. MRIs are preprocessed by repositioning and zero-mean normalization.
Augmentation includes random flipping and cropping to shapes of (128,128,128).
We use Dice and weighted cross-entropy losses for segmentation and diagnosis,
respectively, and use an uncertain loss weight method [12] for joint optimization.
We use Dice, AUC, and accuracy (ACC) to evaluate segmentation and diagnosis.

3.3 Comparison with the State-of-the-Art Methods

We compare MTamba with 1 CNN-based diagnostic method, Tupe-Waghmare et
al. (M1)[17], and 7 multi-task methods for segmentation and diagnosis, including
3 hybrid CNN-Transformer methods: MFEFnet (M2) [24], MTTU-Net (M3) [4],
and M3CI-Net (M4) [23], as well as 4 CNN-based methods: SGPNet (M5) [19],
Sun et al. (M6)[16], Decuyper et al. (M7)[7], and PS-Net (M8) [18]. For a fair
comparison, we use the public implementations and specific descriptions from
their papers to retrain their networks under the same settings. As shown in
Tab. 2, MTamba achieves the best performance. Compared to M1, which per-
forms diagnosis without segmentation, we see increases in IDH genotyping and
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grading, likely due to MTamba effectively capturing tumor location information.
Compared to M8, MTamba shows increases in segmentation and diagnosis, likely
due to our effective exploration of T2-FLAIR mismatch features.

Table 2: Performance comparison with other methods (M)

M Segmentation DICE IDH Genotyping Grading
WT TC ET AUC ACC AUC ACC

UCSF-PDGM
M1 ∼ ∼ ∼ 80.40±3 75.76±4 84.25±4 79.80±5
M2 87.16±4 81.07±15 79.74±16 79.19±3 74.75±2 ∼ ∼
M3 90.04±11 84.33±26 82.01±25 88.50±3 82.83±4 ∼ ∼
M4 89.53±11 84.62±26 82.07±26 89.68±3 84.85±4 ∼ ∼
M5 89.16±11 84.07±26 81.74±25 84.26±3 78.79±4 ∼ ∼
M6 87.72±12 81.75±26 80.14±25 84.73±4 78.79±4 86.84±4 81.82±4
M7 90.41±9 84.16±26 82.51±25 83.37±4 80.81±4 85.26±4 81.82±4
M8 90.33±11 83.82±26 82.06±25 87.20±3 82.83±4 89.53±4 84.85±3
MT 91.73±9 85.94±23 84.09±22 92.51±2 88.89±3 92.86±4 89.90±3

BraTS2020
M1 ∼ ∼ ∼ 85.21±5 77.14±6 84.22±5 80.00±6
M2 84.24±6 65.14±18 61.31±22 80.61±3 75.71±4 ∼ ∼
M3 88.23±10 73.80±26 69.68±30 90.61±3 84.29±4 ∼ ∼
M4 88.49±9 74.02±26 69.03±32 87.09±4 82.86±4 ∼ ∼
M5 87.27±10 73.17±25 68.96±32 85.94±4 80.00±5 ∼ ∼
M6 87.71±11 72.55±26 69.63±32 86.77±4 78.57±5 82.43±4 77.14±5
M7 89.23±11 73.46±24 70.18±32 83.16±4 77.14±5 86.20±3 81.43±4
M8 89.35±11 73.27±25 70.79±31 87.45±3 82.86±4 88.05±4 84.29±4
MT 90.04±9 75.15±22 72.43±30 92.36±2 88.57±4 93.42±4 90.00±3

3.4 Ablation Study

We conduct ablation experiments on MTamba using the UCSF-PDGM. We com-
pare the following scenarios: w/o MFEM (S1), where only features from the
segmentation encoder are used for diagnosis; w/o SMEM (S2), where T2 and
FLAIR images are subtracted and input into DMEM; w/o MSCB (S3), replaced
with convolutions of the same kernel size; w/o LGCB (S4), replaced with FUE;
w/o CSSMF (S5), replaced with summation fusion; w/o TeoM (S6), replaced
with ToM; w/o cross-slice interaction (S7), replaced with inter-slice interaction;
w/o Segmentation Decoder (S8), where diagnosis is performed; w/o IDH Geno-
typing (S9), where segmentation and grading are performed; and w/o Grading
(S10), where segmentation and IDH genotyping are performed. As shown in
Tab. 3, the results of S1, S2, and S3 show the effectiveness of T2-FLAIR mis-
match features for diagnosis, while S4, S5, S6 and S7 show the effectiveness of
our proposed modules, and S8, S9, and S10 show the effectiveness of performing
segmentation, IDH genotyping and grading simultaneously.
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Table 3: The results of ablation study on the UCSF-PDGM dataset.

M Segmentation DICE IDH Genotyping Grading
WT TC ET AUC ACC AUC ACC

S1 91.14±11 85.03±24 83.29±23 89.76±3 84.85±4 87.3±4 82.83±4
S2 91.22±10 85.07±27 83.73±25 89.83±2 84.85±4 90.48±6 86.87±3
S3 91.46±10 85.24±25 83.97±24 91.40±2 86.87±3 90.88±6 87.88±3
S4 91.28±10 85.11±24 83.59±23 92.44±2 87.88±4 91.16±6 87.88±3
S5 90.97±10 85.58±23 83.81±22 91.69±2 84.85±4 86.25±6 83.84±4
S6 90.35±11 83.99±26 82.74±25 88.16±2 83.84±4 87.30±6 84.85±4
S7 90.48±10 84.28±26 83.69±23 90.33±3 86.87±5 90.46±5 88.89±4
S8 ∼ ∼ ∼ 89.70±3 83.84±5 89.72±6 82.83±4
S9 91.44±10 85.91±23 83.75±22 ∼ ∼ 92.26±5 89.90±4
S10 91.46±10 85.90±24 83.86±22 91.70±2 86.87±3 ∼ ∼
MT 91.73±9 85.94±23 84.09±22 92.51±2 88.89±3 92.86±4 90.91±3

Fig. 4: The Visualization Analysis of MTamba

4 Discussion

We visualize the effectiveness of MTamba, as shown in Fig 4. Specifically, we
regard red, green, and purple as the tumor core, edema, and enhancing regions
in segmentation, respectively. When inputting multimodal MRIs, using TeoM
instead of ToM yields better segmentation output in the edema and enhancing
regions. This may be because TeoM can better model the long-range dependen-
cies of MRIs. We use Grad-CAM [15] for feature visualization, and compared to
using the features from the segmentation encoder without MFEM, our method
focuses more on the tumor and surrounding areas. Features obtained by using
summation fusion instead of CSSMF appear more scattered, which may be be-
cause CSSMF effectively explores complementary information between features.
We also compare DMEM with several feature extractor [10, 5] on the UCSF-
PDGM, and DMEM achieves the best performance, surpassing [5] by 4.26% and
5.71% in IDH genotyping and grading AUC, respectively. Compared to other fu-
sion methods [23, 13], CSSMF achieves the best performance. Compared to [23],
CSSMF improves WT DICE, IDH genotyping, and grading AUC by 2.28%,
4.84%, and 5.73%, respectively, showing the effectiveness of MTamba.
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5 Conclusion

In this paper, we propose a multi-task network named MTamba. This method
explores T2-FLAIR mismatch features and is fused with multimodal MRI fea-
tures extracted from the segmentation encoder for IDH typing and grading. Vali-
dated on the publicly available UCSF-PDGM and BraTS2020 datasets, MTamba
achieves good performance in segmentation and diagnosis, showing the potential
to serve as a reliable computer-aided tool for glioma.
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