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Abstract. Automatic medical report generation (MRG) holds consid-
erable research value and has the potential to significantly alleviate the
workload of radiologists. Recently, the rapid development of large lan-
guage models (LLMs) has improved the performance of MRG. However,
numerous challenges still need to be addressed to achieve highly accu-
rate medical reports. For instance, most existing methods struggle to
interpret image details, lack relevant medical knowledge, and overlook
fine-grained cross-modality alignment. To overcome these limitations, we
propose a knowledge-guided vision-language alignment framework with
contrastive learning and LLMs for medical report generation. The de-
signed method leverages visual representations, relevant medical knowl-
edge, and enhanced features to generate accurate reports via the LLMs-
based decoder. To improve the integration of medical-related informa-
tion, we introduce the Knowledge Injection Module, which enhances the
model’s feature representation capabilities while unlocking medical do-
main knowledge in LLMs. Inspired by the contrastive learning scheme, we
introduce the Contrastive Alignment Module to align the visual features
and textual information effectively. Additionally, the Cross-Modality En-
hancement Module can retrieve similar reports for the input images to
boost diagnostic accuracy. We conduct extensive experiments on two
popular benchmark datasets, including IU X-Ray and MIMIC-CXR. The
results demonstrate that our proposed method achieves promising per-
formance compared with state-of-the-art frameworks.

Keywords: Medical Report Generation - Large Language Models - Cross-
Modality Alignment - Knowledge Graph - Contrastive Learning.

1 Introduction

Medical imaging plays a crucial role in modern healthcare, profoundly influenc-
ing the diagnosis and treatment of various diseases [22]. With the development
of artificial intelligence technologies, automated analysis of medical images has
gained widespread attention and achieved remarkable progress [18,9, 20]. Medi-
cal report generation (MRG) is a crucial task in the automated analysis of medi-
cal images, which aims to deliver a coherent and accurate summary of the visual
information present in these images. Compared to other tasks, MRG presents
notable complexities and challenges. Given its potential to reduce the substantial
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workload of radiologists, numerous approaches [12, 1, 10, 16] have been proposed
to enhance the MRG performance.

Generating fluent and accurate medical reports automatically remains a chal-
lenging task. Algorithms need to comprehend both the overarching and de-
tailed aspects of medical images while also possessing relevant medical knowl-
edge. To address these problems, researchers have proposed various solutions.
For instance, some studies [15,14] try to utilize the knowledge graph to em-
bed prior medical knowledge into the frameworks for report generation. Other
researches [12, 1, 3] have made efforts to tackle these issues by incorporating dis-
ease classification subtasks, designing memory-driven modules, or implementing
innovative report-generation manner. Recently, large language models (LLMs)
have exhibited human-like cognitive abilities and skills in text generation [23,17],
revolutionizing various fields, such as chatbots [19] and medical diagnostics [21].
Consequently, many researchers try to apply LLMs to the MRG task. Li et al. [15]
introduced KARGEN, which combines the LLMs with a disease knowledge graph
to generate medical reports. Similarly, Wang et al. [25] proposed R2GenGPT,
which leverages a visual-language model to efficiently generate diagnosis reports.
While these LLMs-based methods have shown promising results, they still fall
short in addressing the aforementioned challenges. Therefore, current MRG so-
lutions may be unreliable for diagnosing rare diseases, severely reducing their
clinical value.

In this paper we propose KACL, a Knowledge-guided vision-language Align-
ment framework with Contrastive learning and LLMs to generate precise medi-
cal reports. The proposed KACL contains five components: the Visual Encoder,
LLMs-based Decoder, Knowledge Injection Module (KIM), Contrastive Align-
ment Module (CAM), and Cross-Modality Enhancement Module (CEM). Among
them, the Visual Encoder is responsible for extracting visual features from med-
ical images. By utilizing visual representations and medical-related knowledge,
the LLMs-based encoder generates corresponding diagnostic reports for the in-
put samples. The KIM can inject medical-related knowledge into the proposed
framework, enhancing the model’s ability to derive powerful feature representa-
tions while unlocking relevant medical domain insights within the LLMs. Inspired
by the contrastive learning scheme, we introduce CAM to align the visual and
textual features, ultimately improving the accuracy of the generated reports.
To further enhance diagnostic precision, we develop the CEM, which assists in
diagnosing the query image by utilizing a pre-trained medical CLIP [7] model
to retrieve similar reports from an external database. We summarize the key
contributions as follows.

1. We propose a novel MRG solution based on LLMs named KACL. This ap-
proach leverages enhanced visual features, medical knowledge, and retrieved
textual representations to form prompt tokens, guiding the LLMs-based de-
coder to produce precise and coherent medical reports.

2. The proposed KACL contains three key modules: Knowledge Injection Mod-
ule (KIM), Contrastive Alignment Module (CAM), and Cross-Modality En-
hancement Module (CEM). The KIM integrates medical-related knowledge
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Fig. 1. The overall architecture of our proposed method. This framework mainly con-
sists five components: Visual Encoder (ENC), LLMs-based Decoder (DEC), Knowledge
Injection Module (KIM), Contrastive Alignment Module (CAM), and Cross-Modality
Enhancement Module (CEM).

into the MRG framework. The CAM aligns the visual and textual features,
while the CEM enhances diagnostic accuracy by retrieving similar reports
as auxiliary information for medical images.

3. We conduct extensive experiments on two benchmark datasets: IU X-Ray
and MIMIC-CXR. The results demonstrate that our method outperforms
current state-of-the-art (SOTA) frameworks in most natural language gen-
eration (NLG) and clinical efficacy (CE) metrics.

2 Method

2.1 Framework

The proposed KACL, illustrated in Figure 1, comprises five components: Visual
Encoder, LLMs-based Decoder, Knowledge Injection Module (KIM), Contrastive
Alignment Module (CAM), and Cross-Modality Enhancement Module (CEM).
Specifically, the input samples comprise a 2D medical image I, medical-related
knowledge K, and external report databases Rg. The KACL aims to generate
a report R, for the input sample. The process can be formulated as: R,
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KACL(I, K, Rg). In this study, the pre-trained Vision Transformer (ViT) [6] is
used as the Visual Encoder f,. to extract latent representations X; from the
provided 4;, medical image I;, which can be defined as: X; = fye(I;).

2.2 Knowledge Injection Module

To produce precise medical reports, the algorithm needs to carefully analyze
image details and demonstrate a strong understanding of medical knowledge.
Integrating medical-related knowledge into the proposed framework can enhance
feature representation while unlocking insights of LLMs in the medical domain.
Therefore, we design the Knowledge Injection Module (KIM) to inject real-world
medical information into KACL. Inspired by CheXpert [11], we build a medi-
cal knowledge graph focusing on chest diseases, and its interconnection rela-
tionships are shown in Figure 2. Specifically, the proposed KIM comprises one
cross-attention module and three graph convolutional network (GCN) layers.
Initially, the extracted visual features X and encoded disease names E should
be processed through the cross-attention module to obtain the initial node rep-
resentations, which are formulated as follows.

N = MultiH-Att(X, E) = Concat(hy, hy, ..., hy WO, (1)

where the MultiH-Att defines multi-head attention module, n is the number of
heads. The h; denotes the i, heads, formulated as: h; = Softmam(%)v;. The
Q= EWiQ, K; = XWX and V; = XW} represent the transformed query, key,
and value. And the WZ-Q, WE, WY, and WO are learnable parameter matrices.

Next, we leverage the designed KIM module to update the obtained features

NO. In summary, the representation rule of the Iy, layer is:
Nl+1 _ G(AINZWI), (2>

where the A! defines the adjacency matrix, N' refers the node features in the
I, GCN layer, and W' indicates the trainable parameters. The 6(-) serves as an
activation function. Finally, we obtain the medical-related knowledge features
K = N3.

2.3 Contrastive Alignment Module

To investigate the relationship between extracted visual features and textual rep-
resentation of medical reports, we develop the Contrastive Alignment Module
(CAM) based on the contrastive learning scheme. It facilitates cross-modality se-
mantic alignment between visual and textual information, enhancing the model’s
ability to obtain more discriminative representations. We utilize the f,. to pro-
cess the input image, selecting the Classify (CLS) Token as its overall repre-
sentation. Subsequently, we employ a pre-trained medical BERT [5] model to
convert the textual information from the ground truth medical report into an-
other CLS Token. Then, the image and text representations are projected into a
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Fig. 2. The pre-constructed medical knowledge graph, where connected diseases are
interrelated.

unified dimensional space utilizing linear projection. Finally, we can derive the
exp(vi,ti)/T

image-to-text contrastive loss £i2§ :)/—log SE . exp(ontn)/T and text-to-image
. o exp(t;,v;)/T . .
contrastive loss L;9; = —log ST exp(tro) /7 The v; and t; denote the extracted

visual and textual representations, respectively. The 7 represents a temperature
hyperparameter, and K refers the batch size. The contrastive loss for CAM is:

1
§(£i2t + Li2:)- (3)
The proposed CAM can effectively reduce the distance between positive pairs

while increasing the distance between negative pairs. It is beneficial for generat-
ing more accurate reports.

Loam =

2.4 Cross-Modality Enhance Module

Radiologists usually refer to some relevant documents when creating new diag-
nosis reports. Therefore, obtaining knowledge from relevant external databases
can significantly boost the model’s effectiveness and diagnostic accuracy in gen-
erating reports. In light of this concept, we propose the Cross-Modality En-
hance Module (CEM), which employs the pre-trained CLIP [7] model to facili-
tate cross-modal retrieval for the provided medical images. Specifically, for each
sample I, we identify the Top-K most relevant retrieved textual representations
Rp = {rL,r%,...,r%} from the external database. These retrieved representa-
tions Rp are processed through self-attention and subsequently cross-attended
with visual feature v’. Notably, the v’ serves as the query, while the output of
the self-attention module acts as both the key and value. The enhanced cross-
modality feature X is defined as:

XY = Cross-Att(Self-Att(Rg), v*). (4)

Remarkably, the self-attention (Self-Att) and cross-attention (Cross-Att) mod-
ules are trainable, while the CLIP model remains frozen during training.
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Table 1. Comparison results with state-of-the-art methods on IU X-Ray and MIMIC-
CXR datasets in terms of NLG and CE metrics. The highest and the second-highest
results are denoted in bold and underlines. RG-L, PREC., REC., and F1. represent
ROUGE-L, Precision, Recall, and F1 Score, respectively.

NLG Metrics | CE Metrics

Dataset | Method [BLEU-1 BLEU-2 BLEU-3 BLEU-4 RG-L METEOR|PREC. REC. FL

R2Gen (2] 0.470  0.304 0219  0.165 0.371  0.187 - - -
METrans [24] 0.483  0.322  0.228  0.172 0.380  0.192 - - -
IU  |R2GenGPT [25] | 0.488  0.316  0.228 0.173 0.377  0.211 - - -
X-Ray |PromptMRG [12]| 0.401 - - 0.098 0.281  0.160 - - -
BoostRRG [16] | 0.499  0.323  0.238 0.184 0.390  0.208 - - -
| Ours | 0.501 0.326 0.244 0.184 0.385 0.211 - - -
R2Gen [2] 0.353  0.218  0.145  0.103 0277 0.142 | 0.333 0.273 0.276
METrans [24] 0.386  0.250  0.169  0.124 0.291  0.152 | 0.364 0.309 0.334
MIMIC |R2GenGPT [25] | 0.411  0.267 0.186 0.134 0.297  0.160 | 0.392 0.387 0.389
CXR  |PromptMRG [12]| 0.398 - - 0.112  0.291 0.175 | 0.501 0.509 0.476
BoostRRG [16] | 0402 0262 0.180  0.128 0.291  0.175 | 0.465 0.482 0.473
| Ours | 0.414 o0.270 0.184 0.136 0.303 0.169 | 0.503 0.442 0.469

2.5 Report Generation

The outputs produced by the Visual Encoder, KIM, and CEM are combined
to form the fused feature X. Then, X and textual prompt P are fed into the
LLMs-based decoder to facilitate the medical report generation. We employ the
LLaMA3.1-8B [8] as the decoder. The decoding process can be outlined as fol-
lows:

Tf = fdeC(Xa P, rll):tfl)‘ (5)

where r¥ € V is the predict token at the step ¢, and V defines the vocabulary.
The predicted report can be expressed as RP = {r{,r5, ....r8}, and T is the
length of the report. The language modeling loss is defined as follows:

T
Lrpm ==Y logp(r}|X, P, ). (6)
t=1

The overall learning objective of our proposed method is performed by minimiz-
ing:
L=Lrim +alcanm, (7)

where a represents the hyperparameter that determine the contribution of Lo 4 s
to the overall loss. We set a = 0.5 by default.

3 Experiments

3.1 Dataset and Evaluation Metrics

Dataset. IU X-Ray [4] dataset is a moderately sized MRG dataset, comprising
a total of 7,470 pairs of images and 3,955 corresponding reports. We adopt the
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Table 2. Model performance with different designed modules in terms of NLG metrics.
The AVG refers to the average improvement of all NLG metrics compared with the base
model. The highest and the second-highest results are denoted in bold and underlines.

Dataset | Base KIM CAM CEM | BLEU-4 ROUGE-L METEOR AVG

v 0.126 0.288 0.154 -

v v 0.133 0.294 0.164 4.71%
Mé}l\é[g{C v v 0.132 0.300 0.165 5.35%

v v 0.129 0.295 0.162 3.34%

v v v v 0.136 0.303 0.169 7.62%

same dataset partitioning approach [15, 26|, allocating the dataset into training,
testing, and validation subsets in a ratio of 7:2:1. MIMIC-CXR [13] is the largest
publicly available dataset of chest X-ray images, comprising 377,110 images. We
conduct experiments following the MIMIC-CXR’s official data split protocol.

Evaluation Metrics. Following the previous works [26,12], we select two
types of evaluation metrics, natural language generation (NLG) and clinical ef-
ficacy (CE) metrics, to verify the performance of our proposed method and
comparison frameworks.

3.2 Implementation Details

All experiments presented in this paper utilized frontal views from the two
datasets. The pre-trained ViT-B/16 is selected as the visual encoder, while the
LLaMAZ3.1-8B is employed as the LLMs-based decoder. The designed KIM con-
sists of a cross-attention module and 3-layer GCN. In the CEM, we choose the
top 15 diagnosis reports to serve as external auxiliary information. The proposed
model is trained on a single Nvidia A100 80GB GPU, with a batch size of 8.
In the MIMIC-CXR dataset, the training epoch is set to 5, whereas in the IU
X-Ray dataset, it is configured to 20. The learning rates for the visual encoder
and other components are set to 5 x 107° and 1 x 10~%, with a linear decay of 0.9.
Specifically, the CLIP and LLMs are frozen, while ViT, BERT, cross-attention,
and several project modules need to be trained.

3.3 Main Results

We conduct a comparative analysis of our proposed method against several lead-
ing MRG solutions, which are shown in Table 1. Our approach outperforms
existing solutions across most indicators in both datasets. In the IU X-Ray
dataset, our designed method achieves the best performance on five NLG eval-
uation metrics, including BLEU-1, BLEU-2, BLEU-3, BLEU-4, and METEOR.
Additionally, it takes 0.385 on ROUGE-L, which is only slightly lower than the
0.390 achieved by BoostRRG [16]. For the MIMIC-CXR dataset, Specifically, our
framework achieves 0.414, 0.270, and 0.136 in BLEU-1, BLEU-2, and BLEU-4,
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Ground Truth Report

KACL Generated Report

Base Model Generated Report

impression:

. findings: The
heart size is normal. the mediastinal contour
is within normal limits. the lungs are free of
any focal infiltrates. there is redemonstration
of a calcified granuloma within the left upper
lobe. there are no nodules or masses. no

there is no visible free intraperitoneal air
under the diaphragm.

visible pneumothorax. no visible pleural fluid.

impression:

. findings: The size
of the heart is normal. the contours of the
mediastinum, the central compartment of the
thoracic cavity, also fall within acceptable
boundaries, suggesting there are no
significant anomalies in the surrounding
structures. the lungs show no focal infiltrates.
however, a calcified granuloma is identified in
the left upper lobe, which may be indicative
of a past infection or inflammation that has
since healed. there is no evidence of

impression:

. findings: The left
lung is clear. the size of the heart falls
within the normal range, suggesting that
there are no indications of enlargement or

other cardiac problems. a thorough
assessment shows no acute bony
abnc ities. there are no indications of air

collections present in the pleural space or
within the mediastinum. Right basilar
airspace disease is unchanged.

pneumothorax or pleural fluid.

Fig. 3. Qualitative examples of the proposed method and base model. Different colors
highlight different medical terms in the reports.

respectively. These results demonstrate an improvement compared to the perfor-
mance of existing methodologies. However, our approach exhibits slightly lower
performance than R2GenGPT [25] in the BLEU-3 metric, primarily because
the latter employs more sophisticated fine-tuning techniques and computing re-
sources during training. For the CE metrics, our method significantly outper-
forms previous SOTA methods in Precision. While the proposed KACL has a
lower Recall and F1 Score than PromptMRG [12], this difference is attributed to
PromptMRG’s use of an external classification model to assign labels to input
images.

3.4 Ablation Study

Effectiveness of Proposed Modules. In this part, we evaluate the contribu-
tion of the various proposed modules to the overall performance. The detailed
results are shown in Table 2. The base model primarily relies on the Visual En-
coder and LLMs-based Decoder. The study reveals that each proposed module
contributes to improving the model’s performance. Compared to the base model,
the KIM and CEM provide a notable improvement, with an average NLG in-
crease of 4.71% and 3.34%, respectively. Compared with KIM and CEM, The
CAM substantially boosts the base model performance. With the help of three
modules, the KACL achieves a relative improvement of 7.62% over the base
method.

Qualitative Results. We present a qualitative example that highlights the
advantages of KACL compared to the base model, as illustrated in Figure 3.
The reports generated by our method capture the majority of key information
present in the ground truth report, demonstrating a significant improvement
over the base model.

4 Conclusion

In this paper, we propose a knowledge-guided vision-language alignment frame-
work with contrastive learning and LLMs to finish the MRG task. By leveraging
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visual features alongside relevant medical knowledge, the powerful LLMs-based
decoder can generate more accurate reports. To address challenges in the MRG
domain, we develop three modules: KIM, CAM, and CEM, which are intended
to integrate medical knowledge, enhance cross-modality feature alignment, and
boost diagnostic accuracy, respectively. To demonstrate the performance of the
proposed method, we conduct extensive experiments on two datasets, includ-
ing IU X-Ray and MIMIC-CXR. Experimental results show that our method
outperforms existing SOTA methods in most NLLG and CE metrics.
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