MICCAI " RISIIEY VEISION 15:dvalldRIE O SPHING

Asynchronous Multi-Modal Learning for
Dynamic Risk Monitoring of Acute Respiratory
Distress Syndrome in Intensive Care Units

Yidan Feng!, Bohan Zhang!, Sen Deng!, Zhanli Hu?, and Jing Qin'®9

! Centre for Smart Health, School of Nursing, The Hong Kong Polytechnic
University, Hong Kong, China
harry.qin@polyu.edu.hk
2 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences,
Shenzhen, China

Abstract. Acute Respiratory Distress Syndrome (ARDS) is a critical
adverse event with high modality rates, yet its recognition in ICU set-
tings is often delayed. Clinicians face significant challenges in integrating
asynchronous, multi-modal data streams with misaligned temporal reso-
lutions during rapid deterioration. This work introduces a deep learning
model for continuous ARDS risk monitoring, designed to dynamically
integrate diverse ICU data sources and generate timely, actionable pre-
dictions of ARDS onset. We extend existing settings for ARDS detection
from static, single-modality prediction to continuous, multi-modal mon-
itoring that aligns with clinical workflows. To address the inherent com-
plexities of this task, we propose tailored solutions for hierarchical fusion
across irregular sampling points, heterogeneous data modalities, and se-
quential predictions, while ensuring robust training against dynamic, ir-
regular inputs and severe class imbalance. Validated on 1,985 MIMIC-IV
patients, our model demonstrates superior performance, achieving aver-
age AUROC scores of 0.94, 0.91, and 0.87 across 6, 24, and 48 hours pre-
onset, respectively, outperforming previous models (AUROC 0.78-0.85).
Furthermore, the model quantifies emergency level to aid in resource pri-
oritization and identifies high-risk patients with peak relative risk reach-
ing 25, demonstrating exceptional discrimination between cohorts. The
code is publicly released at https://github.com/YidFeng/MICCAI25-
ARDS-Risk-Prediction.
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1 Introduction

Risk prediction for critical adverse events, which are characterized by rapid onset
and high mortality rates, is a crucial application of Al in clinical practice [16,13].
Among these events, Acute Respiratory Distress Syndrome (ARDS) represents
a particularly urgent challenge in intensive care units (ICUs) especially after
the COVID-19 pandemic [17], affecting 10-15% of ICU patients [2] with mor-
tality rates alarmingly high (near 40%) [2,11]. A key contributor to this is the
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frequent under-recognition of ARDS, which delays life-saving interventions [2].
This diagnostic gap is exacerbated by the overwhelming volume and complexity
of ICU data, which often exceed the capacity of clinicians to synthesize action-
able insights [3]. Therefore, effective exploitation of this wealth of continuous,
multi-modal data streams to generate timely and accurate predictions of future
ARDS risk could hold significant clinical value.

The early detection of ARDS relies on complementary clinical modalities, yet
existing approaches remain fragmented in their integration. Existing studies have
employed traditional statistical and machine learning methods on structured
electronic health record (EHR) data, focusing on vital signs (VS) and laboratory
results (LAB) within fixed observation windows. For instance, logistic regression
models achieved AUROCs of 0.78-0.81 by analyzing EHR-derived features from
the first 24-48 hours of ICU admission, though these methods largely ignored
temporal dynamics and imaging evidence [21,19,8]. While chest X-rays (CXRs)
provide critical diagnostic specificity by revealing lung-specific pathologies like
bilateral opacities, their diagnostic value is constrained by sparse acquisition,
interpretive subjectivity, and delayed radiographic manifestations of lung injury
[15,1]. Recent advances in deep learning have demonstrated the power of CNNs
to detect subtle CXR patterns predictive of ARDS (AUROC: 0.82-0.85) [1,14],
yet these image-only models overlook the dynamic physiological context captured
by high-frequency VS and irregular LAB measurements. In [12], an attempt was
made to combine CXR with EHR data through late fusion strategies. However,
this approach suffers from oversimplified temporal representations by reducing
time-series data to summary statistics, and static prediction paradigms that rely
on fixed time windows. This neglects both the asynchronous sampling patterns of
ICU modalities and the clinical necessity for dynamic risk reassessment as patient
conditions evolve. Consequently, current systems fail to address two critical gaps:
1) insufficient modeling of cross-modal dependencies across irregularly sampled
data streams, and 2) rigid one-time predictions that misalign with the continuous
monitoring workflow of ICUs, where clinicians require iteratively updated risk
assessments to guide time-sensitive interventions.

To bridge these gaps, we redefine ARDS risk prediction as a continuous multi-
modal monitoring task aligned with clinical workflows. Our framework advances
conventional settings through two critical aspects: 1) dynamic reassessment of
both risk score and time-to-onset urgency at regular intervals, and 2) compre-
hensive utilization of asynchronous multi-modal data streams (multi-view CXRs
and EHR data) acquired throughout the patient’s stay. By synchronizing risk
updates with ICU workflow cycles, the system is expected to provide guidance
during actionable intervention windows. However, this clinical alignment intro-
duces algorithmic challenges in modeling cross-modal dependencies across irregu-
lar temporal resolutions and maintaining computational efficiency over extended
monitoring periods. To address these, we devise a transformer-based architec-
ture with two tailored modifications: The Staged Temporal-Modal (STM) fusion
module decouples temporal and cross-modal interactions, explicitly contextual-
izes sparse imaging findings against continuous physiological trends, relaxing the
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synchronicity assumption of existing multi-modal learning algorithms [6,4,20];
The Progressive Context Memory (PCM) enhances efficient sequential predic-
tion of ICU data streams by incrementally integrating patient data into compact
memory states, which allows adaptive integration of historical insights while min-
imizing redundant computations. Complementing these architectural advances,
our training strategies, late batching and balanced sampling, support effective
and robust learning under complex dynamic inputs and severe class imbalance.
In conclusion, our contributions are as follows:

1. We advance ARDS detection by shifting from static, single-modality predic-
tion to continuous multi-modal monitoring, contextualizing sparse imaging
cues within physiological trends for earlier, actionable alerts.

2. Accordingly, we contribute tailored solutions to address the unique challenges
in our setting, with empirical validation against alternatives confirming the
effectiveness of our hierarchical fusion architecture and training strategies.

3. Our model demonstrates exceptional performance across 24h/48h (AUROC
0.91/0.87) pre-onset windows, surpassing prior methods (AUROC 0.78-0.85)
in a more challenging setting. Notably, in the critical <6h pre-onset window,
our system identifies 91% of ARDS cases with AUROC 0.94. Moreover, pa-
tient risk stratification by our model identifies high-risk cohorts that exhibit
over 20-fold elevated ARDS incidence, while our emergency quantification
(MAE< 0.6 level) directly supports prioritization of resource allocation.

2 Methods

2.1 Problem Setting

Asynchronous Multi-Modal Data. We focus on three modalities: chest X-
rays (CXRs), vital signs (VS) and laboratory results (LAB), with VS and LAB
defined based on a predefined parameter set P. Unlike CXRs, which can be fully
acquired at a single time point, the observation times for the various parameters
in VS and LAB may differ. Each modality exhibits distinct sampling proper-
ties. Vital signs are typically measured at high frequency with regular intervals,
and the parameters remain relatively consistent across samples. In contrast,
laboratory tests are sampled at irregular intervals and cover a broad range of
parameters. Chest X-rays, compared to both VS and LAB, are sampled much
more sparsely and irregularly. These heterogeneous data are organized using a
unified time coordinate, which formulates the asynchronous multi-modal input
at prediction time ¢; over period T as I;, = {D;,t;—T < t < t;}, where each data
point is represented as D" for m = CXR, or D;"”,p € P for m € {VS,LAB},
and ¢ represents the observation time during the patient’s ICU stay.

Risk Monitoring. Instead of diagnosing ARDS from a fixed data window,
our model dynamically monitors ARDS risk through frequent predictions at
regular intervals. Specifically, for an ICU patient, the model begins predicting
at time ¢ty and continues to make predictions at each subsequent time point
t; = to + i x 6 hours, where i = 1,2,.... At each prediction time t;, the
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Fig. 1. Top: Network architecture for risk monitoring from asynchronous modalities
(STM for Staged Temporal-Modal fusion and PCM for Progressive Context Memory,
Transformer Layers consist of standard self-attention and feedforward network [18]).
Bottom: Intuitive demonstration of monitoring results from ARDS patients (ARDS
risk score and associated emergency level indicated in color).

model processes asynchronous multi-modal data I;, over a period T, where
T = min(72 hours, t;—admission time). The model then outputs both the ARDS
risk score (r € (0, 1)), indicating the likelihood of ARDS, and the emergency level
(e € {1,2,3,4}), which indicates the time to onset, providing guidance on appro-
priate interventions and resource allocation. The emergency level 4 represents
the highest urgency, with ARDS onset expected within 12 hours, and level 3 for
12-24 hours, level 2 for 24-48 hours, level 1 for longer than 48 hours.

2.2 Network Architecture

Our network architecture is composed of three cohesive stages: 1) feature encod-
ing, which converts raw data {D;} into unified latent features {f{"}; 2) feature
fusion, which models the dependencies across asynchronous modalities and se-
quential predictions, and produces a summary feature fi; 3) the task head, which
is a simple MLP that predicts the risk score and emergency level from fz

Feature Encoding. Given irregularly sampled multi-modal inputs {D;}, we
encode each modality into unified latent features { ftf”} through specialized pro-
cessing. For CXRs, we extract spatial features using ResNet-34 [7]. For Tabular
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data (VS/LAB), we employ an adaptive sliding window algorithm to construct
temporally cohesive parameter groups. Following [5], we embed windowed data
through linear projection Weone € R¥*! for continuous parameters, and em-
bedding table E € R**ICl for categorical values, where C is the number of cat-
egories. Each parameter becomes a d—dimensional token, with attention masks
suppressing missing values in Transformer layers. The CLS token aggregates
cross-parameter interactions into feature f7".

Feature Fusion. Effective modeling of interactions across asynchronous modal-
ities and sequential predictions is the key challenge in our task. To address
this, we design a hierarchical fusion framework leveraging Transformer architec-
tures [18,1], enhanced by two tailored designs: Staged Temporal-Modal Fusion
(STM Fusion) for efficient temporal-modal integration and Progressive Con-
text Memory (PCM) for sequential prediction optimization. STM Fusion pro-
cesses asynchronous multi-modal features { ftln} through decoupled temporal and
modal phases. First, modality-specific temporal Transformer layers compress
each modality’s irregular sequence into a summary vector, where modality-aware
positional encodings are employed to handle temporal asynchrony. For each fea-
ture f;", the modality type m is encoded as categorical variable C,, and the
normalized relative timestamp is calculated as R; = (f — t;)/AT) within each
observation window [t;,t; + AT]. These two components were fused through
a multilayer perceptron (MLP) with ReLU activation, generating a joint po-
sitional encoding P = MLP(R;,C,,) € R%. Cross-modal interaction is then
modeled by fusing all modality summaries using multi-modal transformer lay-
ers, with modality embeddings separating different modality inputs. For pre-
diction tasks at {tg,...,t;}, PCM explicitly models their dependencies through
incremental encoding and memory-augmented attention. Specifically, at t;, only
new observations since t; 1 are processed to obtain A fz A compact memory
bank M = { fo, A fi—l} dynamically stores historical context, and the cur-
rent feature updates this bank by M +— MU A fl The model then applies a
transformer layer over M to adaptively learn attention weights for context ag-
gregation. This memory mechanism enables real-time inference while preserving
long-range dependencies, which is crucial for clinical deployment.

2.3 Training

Late batching. To handle irregular sequences while preventing information
leakage, we implement a late batching protocol: For each patient, we sequentially
process all their prediction time points {tg, ..., t;, } through the network. Gradient
accumulation is performed over B (batch size) patients before back propagation.
This approach ensures natural handling of variable-length sequences within a pa-
tient and stable gradient statistics through accumulation across patients.

Balanced sampling The balanced sampler mitigates class imbalance by uni-
formly selecting half the batch size from positive and negative class indices,
concatenating and shuffling them to ensure equal representation per batch. Im-
plemented as a dynamic generator, it preserves dataset integrity while optimizing
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Fig. 2. Comparison results for different fusion architectures, with significant differences
highlighted. A for ours, B w/o PCM, C w/o STM, and D w/o both.

gradient updates for this imbalanced learning task.

Training details. We use cross-entropy loss and MSE loss with equal contribu-
tions for risk score and emergency level, respectively. The optimization employs
AdamW with an initial learning rate of 3e-4, scheduled by cosine annealing with
linear warm-up. We train the model with a batch size of 16 for a total of 20,000
steps, and select the final model based on its balanced performance across both
tasks on the validation set. All experiments were conducted using PyTorch on a
single NVIDIA RTX 3090 Ti GPU with 24GB of memory.

2.4 Dataset and Pre-Processing

Our data was extracted from two publicly available databases 1) MIMIC-IV
[10], containing EHR data from 53,130 ICU admissions between 2008 and 2019;
2) MIMIC-CXR [9], a linked dataset of 377,110 de-identified chest radiographs
paired with free-text radiology reports acquired from 2011 to 2016. The initial
exclusion criteria include transfer cases, multiple stays, age under 18, empty
CXR record. Following [21,19], ARDS cases were identified based on diagnosis
records and the Berlin criteria, with further exclusion of patients lacking clear
onset timing or exhibiting onset within 6 hours of ICU admission. This yielded
469 ARDS cases among 9,921 eligible patients. All CXR images, regardless of
view type, were preprocessed through intensity normalization, resizing, center-
cropping to 224 x 224 pixels, and augmented using random horizontal flips and
affine transformations, VS and LAB results were normalized to standard ranges
[6]. The cohort was partitioned into training (70%), validation (10%), and test
(20%) sets via stratified sampling to preserve outcome distribution, with final
results reported on the test subset of 1,985 patients.

3 Results and Analysis

3.1 Design Choices

Fusion types. We validate our fusion architecture by: (1) STM fusion vs. inter-
leaved fusion directly on long-concatenation of asynchronous multi-modal tokens,
and (2) PCM-augmented attention vs. a naive baseline that indiscriminately pro-
cesses all historical data. Performance is measured using ACC (Accuracy), SEN
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Table 1. Effectiveness of training methods .

Training Method

i 0y 0y 0y
Late Batching Balanced Sampling Slopet Volatility] AUROC% 1t ACC% 1 SEN% 1

X X 5.48e-6 0.089 70.62 95.45 0
v X 2.06e-5  0.078 78.32 95.45 0
X v 3.76e-5 0.070 75.52 72.21 59.12
v v 7.41e-4  0.046 82.69 76.55 75.20
Table 2. Effectiveness of using asynchronous modalities.
Modalities o
oxn Ein AUROC% 1T ACC% 1t SEN% 1 SPE%T MAEL  MSE

v X 73.71£1.73 79.92£1.17 45.3842.34 82.15+1.18 1.12+0.03 1.85+0.11
X v/ 79.03x1.19 78.04£0.96 67.03+1.80 79.13+0.98 1.2640.04 2.424+0.12
v v 83.26£0.96 76.431+0.29 73.70£0.20 76.534+0.08 0.58+0.01 0.70+£0.02

(Sensitivity) and AUROC, as well as MAE for emergency level, averaged across
all sequential prediction points with 3-fold cross-validation. Threshold is consis-
tently fixed as 0.5. As shown in Fig. 2, STM contributes significantly to AUROC,
while PCM contributes significantly to emergency level prediction and tends to
generate robust results with small deviation, likely due to its context modeling.
STM and PCM together ensures the sensitivity of ARDS patients, which is cru-
cial for risk prediction models. Without effective fusion strategies, baseline D
exhibits highest ACC but markedly lower SEN under severe class imbalance.
Effectiveness of training methods. The necessity of our tailored training
methods is validated through ablation studies using absolute loss slope, volatil-
ity (relative mean absolute change), and diagnostic measures. Without balanced
sampling, the negative class dominates, compressing predictions toward zero with
minimal variance. Late batching alone improves AUROC by +8% by reducing
excessive padding and masking for irregular data. Together, they ensure stable
and effective training with largely improved diagnostic measures (Tab. 1).
Effectiveness of using asynchronous modalities. From Tab. 2, EHR sur-
passes CXR in risk prediction due to temporal sensitivity to early deteriora-
tion, while CXR marginally edges emergency prediction for positive cases via
post-symptom pathological signatures. Their fusion has shown significant com-
plementary synergy in this challenging task.

3.2 Performance Evaluation of Dynamic Risk Monitoring

Diagnostic performance of risk score predictions. Fig. 1 provides an in-
tuitive demonstration of the monitoring results. Here, we further provide assess-
ments on temporal prediction efficacy by ROC curves of risk scores across 6-hour
windows within 24 hours preceding ARDS onset (Fig. 3(c-f)). For each window,
predictions were derived from randomly sampled time points (negative cases:
random windows; positive cases: pre-onset windows) over 10 experiments. AU-
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Fig. 3. Comprehensive evaluation of dynamic risk monitoring.

ROC decreased gradually from 0.93 (< 6h) to 0.86 (18-24h) with lower clinical
urgency. Aggregated performance across broader intervals (Fig. 3(g)) achieved
AUROC of 0.91 (< 24h) and 0.87 (< 48h) via 10 repeated samplings of all eligible
prediction points, significantly outperforming prior studies (AUROC: 0.78-0.85).
Fidelity of emergency level predictions. The model’s predicted emergency
levels escalate progressively as ARDS onset approaches (Fig. 1). Stratification by
true urgency levels (Fig. 3a-b) reveals that Level 1 (> 48h) predictions maintain
clinically acceptable error margins (< 1 level) avoiding resource misallocation,
while Levels 2-3 exhibit significantly improved accuracy yet cluster conserva-
tively in mid-range values (predicted: 1.5-3.3 vs. true: 1-4; Fig. 1). This sys-
tematic under-prediction of extremes necessitates recalibration or loss function
refinement to enhance discriminative capacity at critical urgency thresholds.

Patient risk stratification. Patient-level analyses compared disease incidence
between between high-risk (any threshold-exceeding) and low-risk groups using
relative risk (RR). In Fig. 3 (h), RR values consistently exceeded 12 in thresh-
olds (0.3-0.9), demonstrating robustness in risk stratification. The RR score
dropped at threhold of 0.4, which indicates a transition of domination from
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low-risk group to high-risk group. Peak discriminatory performance occurred
at a threshold of 0.7 (RR= 25.16), with stable RRs (19.78-25.16) observed in
the moderate threshold range (0.5-0.7), effectively identifying high-risk patients,
enabling efficient resource allocation.

4 Conclusion

This paper advances ARDS detection settings to continuous future risk moni-
toring leveraging asynchronous multi-modal ICU data. We propose tailored so-
lutions for hierarchical fusion and effective training, validated through ablation
studies. Notably, our results demonstrate markedly higher AUROCSs compared to
existing work, with potential clinical value for early ARDS detection and resource
prioritization supported by emergency indication and patient risk stratification.
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