
DGMIR: Dual-Guided Multimodal Medical
Image Registration based on Multi-view

Augmentation and On-site Modality Removal

Gao Le1,2, Yucheng Shu1,2,3 �, Lihong Qiao1,2,3, Lijian Yang1,2, Bin Xiao1,2,
Weisheng Li1,2, and Xinbo Gao1,2

1 Chongqing University of Posts and Telecommunications, Chongqing 400065, China
2 Chongqing Key Laboratory of Image Cognition, Chongqing 400065, China

3 Chongqing Key Laboratory of Precision Diagnosis and Treatment for Kidney
Diseases, Chongqing 400065, China

{shuyc, qiaolh, xiaobin, liws, gaoxb}@cqupt.edu.cn,
d240201011@stu.cqupt.edu.cn, eeejyang@gmail.com

Abstract. Multi-modal medical image registration integrates comple-
mentary information from various modalities to deliver comprehensive
visual insights for disease diagnosis, treatment planning, surgical naviga-
tion, etc. However, current methods often suffer from artifacts, computa-
tional overhead, or insufficient handling of modality-specific interference.
Moreover, they still rely on specialized modules, such as generative trans-
modal units, additional encoders, or handcrafted modality-invariant op-
erators, without fully exploiting the inherent potential of registration fea-
tures. To address these drawbacks in multimodal medical image registra-
tion, we propose a novel registration framework. First, a plug-and-play
architecture is proposed to directly process multi-scale heterogeneous
features, with active guidance only during deformation field generation
stage. Second, we introduce a multi-view feature reorganization module
that dynamically optimizes feature distributions via adaptive relation
computation and global calibration. Finally, an in-network modality re-
moval module is introduced to leverage multi-scale adaptive convolu-
tions to explicitly eliminate modality-specific interference. Extensive ex-
periments on the BraTS2018 and Learn2Reg2021 datasets confirm that
our proposed method achieves state-of-the-art performance on multiple
multimodal medical image registration metrics. (https://github.com/St-
Antonio/DGMIR)

Keywords: multimodal medical image registration · feature disentan-
glement · feature removal.

1 Introduction

Deformable image registration (DIR) is a fundamental technique in medical im-
age processing. It aims to establish spatial alignment between two or more im-
ages, facilitating a wide range of clinical downstream workflows, such as disease
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diagnosis, treatment planning, surgical navigation, etc. Recent advances in deep
learning have driven significant progress in DIR, leading to notable improvements
in both computational speed and registration accuracy [2–4].

However, advancements in imaging technology have led to widespread use of
multimodal medical images like CT, MRI, etc. Their complementary diagnos-
tic value makes multimodal image registration a critical clinical requirement.
Nevertheless, due to variations in acquisition protocols, the same or similar
anatomical structures often exhibit significant visual differences across imag-
ing modalities. While existing registration frameworks are still limited by this
semantic-appearance mismatch phenomenon, recent research has increasingly
focused on multimodal medical image registration methodologies.

Among these researches, image translation-based strategies are widely em-
ployed [5–8]. By mapping images from different modalities to a unified modality
via generative network, multimodal registration can be simplified to a monomodal
task, notably reducing the influence of visual heterogeneity. However, these meth-
ods often introduce artifacts and require additional computational resources [1].
Additionally, some studies [9, 10] have introduced cross-modal-interaction net-
works to enhance feature correlation between multimodal images. However, such
methods merely integrate generic modules, such as attention mechanisms, into
the registration task, failing to address the fundamental challenge of modality-
specific confounding factors in cross-modal feature alignment.

Recently, some methods attempt to distill task-specific representations essen-
tial for multimodal registration [13–15]. For instance, Qin et al. [13] introduced
a feature space decomposition approach, separating the shared shape space from
the modality-specific appearance space. Wang et al. [14] developed distinct en-
coders to separately extract general and structural features, further optimizing
structural representation via a self-similarity module. Mok et al. [15] proposed
to leverage neighborhood self-similarity and anatomy-based contrastive learning
to achieve highly discriminative, contrast-invariant representations.

In sum, while existing methods demonstrate competent multimodal registra-
tion performance, they predominantly rely on additional network components,
such as generative trans-modal units, specialized encoding branches, or hand-
crafted modality-invariant feature engineering strategies, without fully exploit-
ing the potential inherent in the registration features themselves. Therefore, in
this paper, we argue that the scaling-law should not be taken for granted: be-
fore stacking various fancy network modules, it is imperative to first focus on
generalized feature learning frameworks and conduct an in-depth analysis to
explore their upper limits in multimodal registration tasks. Therefore, in this
study, we propose a novel multimodal DIR model, namely DGMIR, to address
the aforementioned issues. Our main contributions are as follows:

• We propose a flexible multimodal registration framework that directly inte-
grates multi-scale heterogeneous features in a plug-and-play manner. By im-
plementing active guidance only during the deformation field decoding and
generation phases, our approach iteratively achieves accurate multimodal
registration.
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• We introduce a multi-view feature reorganization guidance module that dy-
namically modulates feature distributions through adaptive relation compu-
tation and global calibration factor, thereby enhancing the discriminative
power of multimodal registration features.

• We propose a modality on-site removal guidance module, which leverages
adaptive mean convolutions across multiple scales within the registration
backbone, to explicitly learn and eliminate modality information for the
continual optimization of the deformation field.

Extensive experiments on two public multimodal datasets, BraTS2018[22]
and Learn2Reg2021[23], demonstrate our method’s superiority over state-of-the-
art approaches, achieving significantly improvements in multimodal registration.

2 Methodology

2.1 Overall Structure

The overall structure of the network is shown in Fig.1. Given a pair of fixed and
moving image, IF and IM , the model outputs a deformation field ϕ: Uθ(IF , IM ) =
ϕ, where Uθ denotes the registration network.

The encoder adopts a four-stage architecture, where each stage contains just
one convolutional layer followed by a ReLU activation function. The number
of output channels in each stage is {16, 32, 32, 64}, with the first stage pre-
serving the original resolution and the subsequent three stages successively re-
ducing the feature map size by half. The encoder produces two sets of feature
maps: {F1, F2, F3, F4} and {M1,M2,M3,M4}. The decoder adopts a coarse-to-
fine manner across four stages, each comprising a sequential combination of a
multi-view feature reorganization guidance module and a modality on-site re-
moval guidance module.
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Fig. 1. The Overall structure of the proposed network.
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2.2 Multi-view Feature Reorganization Guidance (MFRG)

Through preliminary experiments, we discovered that there are notable dispari-
ties between multi-modal image features due to different imaging protocols, and
these disparities are predominantly manifested as gaps in the statistical distri-
bution within the channel dimension[24]. In particular, the mean and maximum
are two key statistics within each channel, which can offer different views to
guide feature modulation. Therefore, we propose a multi-view guided feature
enhancement mechanism, which integrates aforementioned statistics indicators
to evaluate the importance of channel with different distribution. By combin-
ing these two distribution indicators, we achieve a more comprehensive charac-
terization of feature distribution. Moreover, we incorporate a learnable global
calibration factor to guide holistic feature expression by adaptively fusing these
complementary indicators. Finally, we quantify inter-modal feature relationships
and selectively strengthen the feature representation. The specific structure is
shown in Fig.2.
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Fig. 2. Multi-view Feature Reorganization Guidance module.

For fixed and moving image features Fi,Mi ∈ Rc×h×w×d, where i indicates
the encoder stage, h×w× d specifies the spatial dimensions of the feature map,
and c denotes channel number. We begin by concatenating Fi and Mi, then in-
dependently applying max pooling and average pooling layers to the combined
features. Subsequently, we use two 1×1×1 convolution layers to both shrink
and recover the feature descriptors based on the pooled outputs, thereby elim-
inating redundant information while retaining salient features. After deriving
the feature global expressions, we calculate inter-modal cross-correlation and
intra-modal self-correlation through matrix multiplication. Inspired by [25, 26],
we utilize row-wise and column-wise summations to capture correlations be-
tween the channels and quantify feature distribution’s importance relative to
all others, then integrate these importance scores with a calibration factor β.
Ultimately, feature expressions are refined through element-wise multiplication
of the adaptive enhancement factor and the original features. By introducing
β, the network not only adaptively modulates feature expressiveness but also
suppresses extraneous representations.
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2.3 Modality On-site Removal Guidance (MORG)

In our multimodal registration experiments, we found the modality feature ex-
hibits smaller gradient variations and a relatively uniform distribution. We also
decomposed the image into high and low-frequency components and reconstruct-
ing it only with the high-frequency part, we found that the modality-independent
features can be effectively preserved. Based on these observations, we assume
that uniformly distributed modality features may interfere the inter-modal cor-
respondence to accurately predicting the deformation field. However, current
methods do not explicitly exclude interference from these modality-specific fea-
tures. Therefore, we propose a guided coding method that explicitly decodes
modality information and progressively eliminates modality-specific features at
multiple scales during the decoding process. To the best of our knowledge, this
marks the first attempt to explicitly perform modality removal within the feature
decoding and flow generation process.

In digital image processing, mean filtering attenuates high-frequency compo-
nents while preserving low-frequency information. It utilizes a fixed-size sliding
window, computing the arithmetic mean of the enclosed pixels to replace the cen-
ter pixel. Therefore, we incorporate mean filtering properties as prior knowledge
into the convolution operation. This approach not only guides the convolution
to be more sensitivity to uniformly distributed features but also offers the flex-
ibility to fine-tune the convolution weights for different modalities. Guided by
these considerations, we designed a modality feature removal module.
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Fig. 3. Left: Modality On-site Removal Guidance module. Right: Deformation Field
Prediction module.

Next, we provide the detailed implementation of our method as illustrated
in Fig.3. Initially, we apply both a 3×3×3 vanilla convolution and a dilated con-
volution to the input features, respectively. These two distinct convolution tech-
niques facilitate feature extraction across varying receptive field ranges. Next,
the vanilla convolution outputs undergo a 3×3×3 mean convolution, whereas
the dilated convolution outputs undergo a 5×5×5 mean convolution. Specifi-
cally, the weights of these mean convolutions are initialized using a uniform
distribution. Subsequently, we subtract the mean convolution output from the
vanilla convolution output, producing de-modality features at the current scale.
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Finally, the subtracted outputs are concatenated and fed into a pointwise convo-
lution layer, yielding the module’s final output. Where mα and mβ are learnable
parameters act as modality-specific parameters to dynamically adjust feature
representations for different modalities by Hadamard product with features.

Eventually, we adopt a coarse-to-fine strategy for predicting the deformation
field. In the initial decoding stage, the network inputs are the original encoder
features F1 and M1. In later stages, the features become Fi and Mi ◦ ϕi−1(Wi)
, where ϕi−1 is obtained through 2× upsampling of the previous stage’s sub-
deformation field, and the operator ◦ is applied through the Spatial Transfor-
mation Network[16]. Lastly, the deformation field at each stage is derived by
merging the output of the deformation field prediction module (DFP) with the
sub-deformation field from the preceding stage. Implementation specifics of the
DFP appear in Fig.3, and its key formula is presented below:

ϕi =

{
ϕ

′

i, ϕ
′

i = DFP(Fi, Mi) i = 1

(ϕi−1 ◦ ϕ
′

i) + ϕ
′

i, ϕ
′

i = DFP(Fi, Mi ◦ ϕi−1) i = 2, 3, 4
(1)

3 Experiments

Datasets and Experimental details: In this study, we employ two public
datasets: BraTS2018 and Learn2Reg2021. BraTS2018 comes from the MICCAI
Brain Tumor Segmentation (BraTS) 2018 Challenge, consisting of 285 imaging
volumes across four MRI modalities (T1, T1ce, T2, FLAIR), each accompa-
nied by expert segmentation labels. All scans measure 240×240×155 at 1 mm
isotropic resolution. We validate our proposed model using T1 and T2 modalities.
Since the original dataset is pre-aligned, we introduce random misalignment by
applying elastic transformations and Gaussian smoothing to T2 images, followed
by cropping them to 160×192×128. Finally, we randomly split the dataset into
training, validation, and test sets, with 185, 35, and 65 examples, respectively.
Learn2Reg2021 (L2R2021) is an abdominal multimodal dataset comprising CT
and MRI scans from the same patients, each accompanied by expert segmenta-
tion labels. All scans measure 192×160×192 at 1 mm isotropic resolution and
have been rigidly pre-aligned. The dataset is then divided into training, valida-
tion, and test subsets, comprising 5, 1, and 2 scans respectively.

We implement our network in PyTorch and train it with the Adam optimizer
with a learning rate of 1e-4, using a batch size of 1 for 500 epochs. The result
for each method is reported on the same PC with 3.2GHz CPU and RTX 4090
GPU. For evaluation, we use Dice score (DCS), 95% Hausdorff distance (HD95),
and the percentage of negative values of the Jacobian determinant (%|Jϕ| ≤ 0)
to assess registration performance.

In this study, we use LMIND = 1
N

∑
x∈Ω

∑
n∈N exp(−||DF (x, n)−DW (x, n)||2)

[21] as similarity loss function, where D(x, n) =
(

|I(x)−I(x+n)|2
V (x)

)
, I(x) represents

the intensity value of the image at position x, (x + n) denotes a point within
the neighborhood, V (x) is the local variance at position x. When segmentation
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labels are available, we also introduce a weakly supervised loss function LDice =

− 1
C

∑C
i=1

2|SFi∩SWi|
|SFi|+|SWi| , where SF and SW represent the segmentation labels of the

fixed and warped images, respectively, and C denotes the number of categories
in the segmentation labels. In addition to similarity-based loss, we incorporate a
regularization term Lreg =

∑
∥∇φ∥2 to ensure the continuity and smoothness of

the deformation field. The final loss function is L = LMIND + λ1LDice + λ2Lreg,
where λ1 and λ2 are the trade-off parameters between different terms, and in
this experiment, they are set to 1 and 0.5, respectively.

We compare our model with a series of state-of-the-art deep learning meth-
ods, including VoxelMorph[3], TransMorph[2], GroupMorph[18], TransMatch[19],
ModeT[17], and CorrMLP[20]. All comparison methods use the same loss func-
tion aforementioned, and all hyperparameter settings are kept unchanged with
the original code.

Quantitative and Qualitative Analysis: Table 1 presents the quantitative
comparison results of various methods on two datasets. In both datasets, the pro-
posed DGMIR demonstrates a substantial advantage across all primary evalua-
tion metrics. In terms of the DCS metric, our method surpasses the second-best
approach by 2.2% and 1.6% on BraTS2018 and L2R2021, respectively. Regard-
ing the HD95 metric, our method outperforms all competitors on BraTS2018
but trails the top-performing method by 0.98 on L2R2021. We also visualized
the registration results of all methods on BraTS2018, as shown on the left panel
of Fig.4. To confirm the statistical significance of these results, we conducted
two-sided Wilcoxon signed-rank tests on the DSC and HD95 metrics, compar-
ing our method against the second-best approach in each dataset. The obtained
p-values (p ≪ 0.05) consistently reject the null hypothesis, confirming the sta-
tistical significance of our method’s superior performance. In addition, the same
order of magnitude or lower %|Jϕ| ≤ 0 results in the table show that DGMIR
maintains a good anatomical topology while maintaining excellent registration
accuracy.

To assess the effectiveness of the proposed modules, we conducted system-
atic ablation experiments on the BraTS2018 dataset, as presented in Table 2.
The baseline model includes only the deformation field prediction module in the
decoder. Experimental findings reveal that adding MFRG and MORG individ-
ually boosts DSC by 8.8% and 8.9%, respectively, confirming each component’s
independent effectiveness. Furthermore, we examine the efficacy of mean convo-
lution in MORG. In Table 2, where no_grad signifies that the mean convolution
weights are not learned via backpropagation, ord_conv denotes using the stan-
dard convolution, lncc denotes LNCC loss function. We also visualize the MORG
output on the right panel of Fig.4, where the features exhibit a high degree of
uniformity after modality removal yet preserve the underlying structural infor-
mation. By integrating the tabular data with the visualization results, one can
see that mean convolution effectively isolates and extracts modality-specific fea-
tures. Notably, employing the image intensity-based LNCC loss function yields
results comparable to MIND. This is chiefly because, after the modality removal
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Fig. 4. Left: Visualization of the output of the MORG, where (a) and (c) denote moving
and fixed feature from difference modalities (T1 and T2), and (b) and (d) denote the
feature after modality removal. Right: Visualization of the registration results, where
Ori_Moving denotes the original volume without random elastic transformation.

Table 1. The quantitative results of different registration methods on two datasets.

BraTS2018 Learn2Reg2021

DSC (%) HD95 %|Jϕ| ≤ 0 DSC (%) HD95 %|Jϕ| ≤ 0

VoxelMorph[3] 75.5 2.546 0.07e-4 59.9 24.77 7.31e-3
TransMorph[2] 77.1 2.334 0.84e-4 60.9 24.42 1.07e-2
CorrMLP[20] 77.2 2.379 0.07e-4 63.6 25.37 2.19e-4
GroupMorph[18] 76.8 2.267 0.85e-4 60.0 24.09 4.56e-3
TransMatch[19] 76.8 2.256 0.06e-4 61.8 22.69 6.13e-3
ModeT[17] 74.4 2.602 0.66e-4 63.9 27.27 3.77e-4
Ours 79.4 1.931 1.52e-4 65.5 23.67 9.08e-4

step, the feature space predominantly contains structural features resembling a
unimodal distribution, allowing unimodal loss to perform comparably well.

4 Conclusion

We introduce a flexible multimodal medical image registration network that
achieves better registration results by actively guiding the prediction of defor-
mation fields at the decoding stage. A multi-view feature reorganization guidance
module integrates the global representation of feature distributions under differ-
ent views and selectively enhances their representation. In addition, we employ a
modality on-site removal module, which can explicitly capture modality-specific
features and progressively eliminate them during decoding. The experimental
results confirm the superior performance of the proposed method.
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Table 2. The results of ablation experiment.

Methods DSC(%) HD95 %|Jϕ| ≤ 0

Baseline 69.5 2.936 -
Baseline+MFRG 78.3 2.155 2.35e-4
Baseline+MORG 78.4 1.999 1.53e-4
Baseline+MORG(no_grad) 77.6 2.132 1.53e-4
Baseline+MORG(ord_conv) 77.6 2.171 1.18e-4

Baseline+MFRG(lncc) 76.5 2.237 1.84e-3
Baseline+MFRG+MORG(lncc) 78.9 2.130 1.47e-4
Baseline+MFRG+MORG(Ours) 79.4 1.931 1.52e-4
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