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Abstract. Understanding the intricate workflows of cataract surgery re-
quires modeling complex interactions between surgical tools, anatomical
structures, and procedural techniques. Existing datasets primarily ad-
dress isolated aspects of surgical analysis, such as tool detection or phase
segmentation, but lack comprehensive representations that capture the
semantic relationships between entities over time. This paper introduces
the Cataract Surgery Scene Graph (CAT-SG) dataset, the first to pro-
vide structured annotations of tool-tissue interactions, procedural vari-
ations, and temporal dependencies. By incorporating detailed semantic
relations, CAT-SG offers a holistic view of surgical workflows, enabling
more accurate recognition of surgical phases and techniques. Addition-
ally, we present a novel scene graph generation model, CatSGG, which
outperforms current methods in generating structured surgical represen-
tations. The CAT-SG dataset is designed to enhance AI-driven surgical
training, real-time decision support, and workflow analysis, paving the
way for more intelligent, context-aware systems in clinical practice. The
dataset is available at github.com/felixholm/CAT-SG.
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1 Introduction

Advancements in machine learning and computer vision are transforming com-
puter-assisted surgery, enabling precise planning, real-time decision support, and
automated workflow analysis. While progress has been made in surgical video
analysis for tasks like tool detection, phase segmentation, and triplet recognition,
achieving a holistic yet fine-grained understanding of surgical workflows remains
a challenge.

Scene graphs offer a robust framework for modeling structured interactions
within complex environments, representing entities as nodes and their relation-
ships as edges. In computer vision research, they are increasingly recognized as
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valuable tools for providing structured, fine-grained, and human-readable rep-
resentations that yield holistic insights into dynamic scenes [11,14,16]. There-
fore, the application of dynamic scene graph representations holds significant
promise for revolutionizing surgical workflow analysis by encoding surgical scenes
through surgical elements, their spatio-temporal features, and interactions. Al-
though prior research has explored scene graph-based approaches for surgical
workflow recognition [15,10,12], these efforts have been constrained by the limi-
tations of existing datasets lacking fine-grained semantic interactions necessary
for detailed procedural analysis.

Cataract surgery, one of the most common and intricate ophthalmic proce-
dures, exemplifies the need for structured surgical representations. The success
of phacoemulsification, a widely used cataract removal technique, depends on
precise tool-tissue interactions, such as controlled ultrasonic energy application
for lens fragmentation and delicate intraocular manipulation. Cataract proce-
dures involve fine-grained motion dynamics and subtle anatomical interactions,
which existing datasets fail to systematically capture, hindering the development
of automated workflow analysis solutions.

To address this gap, we introduce the Cataract Surgery Scene Graph (CAT-
SG) dataset, a novel resource derived from the CATARACTS dataset [1]. CAT-
SG provides structured representations of surgical elements, encompassing their
geometric, temporal, and semantic interactions, with a particular focus on tool-
tissue relationships. It also introduces a new downstream task of surgical tech-
nique recognition, complementing the existing surgical phase annotations in
CATARACTS.

Our contributions are summarized as follows:
CAT-SG Dataset: We present the first Cataract Surgery Scene Graph dataset,
with over 1.8 Million annotated relations. Additionally, CAT-SG provides novel
annotations for surgical techniques, enabling a more comprehensive understand-
ing of procedural variations beyond traditional phase recognition.
Comprehensive Benchmarking and Evaluation: To demonstrate the util-
ity of CAT-SG, we establish benchmarks for the three key tasks of our dataset:
scene graph generation, phase recognition and technique recognition, demon-
strating the dataset’s applicability across various surgical workflow tasks.
Novel Scene Graph Generation Model (CatSGG): Additionally, we pro-
pose CatSGG, a new scene graph generation model leveraging large-scale pre-
training and spatio-temporal attention to efficiently generate structured rep-
resentations of surgical interactions outperforming the state-of-the-art method
ORacle [23] on CAT-SG.

2 CAT-SG Dataset

2.1 CATARACTS

We introduce a novel dataset named CAT-SG that extends the publicly avail-
able CATARACTS dataset [1] with scene graph annotations. The CATARACTS
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Fig. 1. Samples from one video of CAT-SG, showing Image and Scene Graph including
semantic and geometric relations

dataset consists of 50 high-resolution videos of cataract surgeries, collected at
Brest University Hospital. Each video captures a complete surgical procedure
with a duration of 11 minutes on average (min: 6 min, max: 40 min). With over
nine hours of annotated surgical footage, CATARACTS provides a robust basis
for developing machine learning models for surgical video understanding [1].

2.2 Annotations

The scene graph annotations were created through a manual labeling process
conducted by 9 trained student annotators. The annotators reviewed the videos
and interactively marked each instance of a surgical tool interacting with an
anatomical structure, followed by an iterative expert review process to verify the
validity of our labels. After over 1200 combined hours of annotating, this process
resulted in a detailed temporal mapping of tool-tissue interactions throughout
the surgeries. The interactions are classified into 8 categories shown in Table 1.

The following 29 objects were considered for annotations: Pupil, Surgical
Tape, Hand, Eye Retractors, Iris, Skin, Cornea, Hydrodissection Cannula, Vis-

Table 1. Relations annotated in CAT-SG

Relation Example Samples
Holding e.g., forceps fixating sclera 13,380
Activation e.g., phaco-handpiece using emulsification 44,552
Pushing e.g., micro manipulator pushing & rotating nucleus 3,874
Pulling e.g., cystotome pulling on capsular bag flap 11,895
Cutting e.g., corneal incisions using knife 1,925
Inserting tool is inserted or retracted through the primary or

secondary incision in the cornea
34,016

Retracting 23,886
Close to spatial proximity of one object to another 1,677,724
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Table 2. Size of comparable datasets and CAT-SG

Avg. Annotated Unique Unique Annotated
Dataset Videos Duration Frames Objects Relations Relations
4D-OR 10 11 min 6,743 11 14 103,740

CholecT45 45 33 min 90,489 20 9 127,385
CAT-SG 50 11 min 164,162 29 9 1,811,252

coelastic Cannula, Capsulorhexis Cystotome, Rycroft Cannula, Bonn Forceps,
Primary Knife, Phacoemulsification Handpiece, Lens Injector, Irrigation/Aspi-
ration Handpiece, Secondary Knife, Micromanipulator, Capsulorhexis Forceps,
Suture Needle, Needle Holder, Charleux Cannula, Vitrectomy Handpiece, Mendez
Ring, Marker, Troutman Forceps, Cotton, Iris Hooks, Vannas Scissors.

We sample and annotate the 50 videos in our dataset at a temporal reso-
lution of 5 fps, making CAT-SG the largest dataset among comparable efforts
for detailed surgical scene understanding (Table 2). We also use pseudo-labelled
segmentation masks based on the CaDIS dataset to provide a grounding to each
object in our annotations (position, size, bounding box). We will also release
these masks in addition to our dataset.

Use Cases: CAT-SG is designed to support detailed surgical video understand-
ing through structured scene graph representations offering the following tasks:
Surgical Scene Graph Generation: This task involves automatically con-
structing structured scene graphs from surgical videos. Given a sequence of
frames, the goal is to detect surgical instruments, anatomical structures, and
their interactions over time. Successful models must not only recognize objects
but also infer their relationships, enabling a deeper understanding of surgical
workflow and tool usage patterns.
Surgical Workflow Recognition: Our dataset enables surgical workflow recog-
nition by leveraging the predefined 19 surgical steps from the CATARACTS
dataset [1]. With the integration of scene graph annotations, this process gains
additional structure and granularity, reinforcing its role as a fundamental task
in surgical video understanding.
Surgical Technique Recognition: To enhance surgical video analysis, we
add new annotations distinguishing two nucleus-breaking techniques: “Stop and
Chop” and “Divide and Conquer.” Each procedure in the dataset is labeled as
using one of these two techniques during the nucleus breaking step. Identifying
these techniques requires a nuanced understanding of tool movements and proce-
dural dynamics, making this a complex and valuable benchmark for automated
surgical workflow analysis.

3 CatSGG Scene Graph Generation Method

We introduce a novel scene graph generation method comprising of two steps:
1) entity localization and base graph construction, 2) geometric and semantic
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Fig. 2. Overview of the CatSGG+ Pipeline: an input video chunk is fed into
Mask2Former with a video-based backbone to extract rich spatio-temporal features.
The extracted query embeddings are pooled and used to generate pair proposals, which
are then processed by a relation predictor and classifier to infer semantic relations. Ge-
ometric relations are inferred from the predicted mask.

relation prediction.

Annotation-efficient Entity Localization While bounding boxes provide
coarse localization, they lack the spatial precision needed for modeling surgical
interactions in scene graphs. We leverage segmentation models instead, as they
offer fine-grained instance localization, enabling more accurate spatial reasoning
and relationship extraction. Surgical video segmentation could also be challeng-
ing due to the long duration of procedures, e.g. cataract surgeries typically last
around 11 minutes, making manual annotation and computational processing at
high fps highly burdensome. To address this, we propose an annotation-efficient
solution for instance segmentation of surgical elements within CATARACTS
frames by leveraging state-of-the-art segmentation and video-language pretrain-
ing. Our approach builds upon Mask2Former (M2F) [4] while incorporating
domain-specific prior knowledge from Watch&Learn [8], a large-scale video-
language pretraining framework. Specifically, we replace the standard back-
bone of M2F with a finetuned VideoSwin [13], which was trained within the
VALOR framework [3] alongside a BERT encoder [6] for video-language align-
ment. We opt for this model over the original VideoSwin because its pretraining
on 2,900 YouTube cataract surgery videos [8] provides strong domain priors,
allowing effective segmentation with fewer annotated samples. Moreover, the
spatio-temporal design of VideoSwin enhances the model’s awareness of cataract
surgery dynamics, further improving segmentation performance. By integrating
VideoSwin into M2F, we adapt the segmentation pipeline to better capture the
temporal and contextual dependencies in surgical videos while requiring fewer
annotated frames.
Geometric Relation Prediction: The “Close to” relation, which captures spa-
tial proximity, is determined based on M2F segmentation predictions. Specifi-
cally, we identify instances with adjacent masks (touching boundaries) as being
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close to each other, following the approach in [10].
Semantic Relation Prediction: The VideoSwin backbone of our M2F pro-
cesses 8 consecutive frames as a chunk, with segmentation and scene graph gen-
eration performed only on the last frame. Consequently, our backbone inherently
captures temporal information across frames. Inspired by query embedding solu-
tions [17,18,20,22,21,19], we leverage the output query vectors (q) from M2F for
relation prediction. Each query vector encodes class-specific and spatial infor-
mation for a single instance. To model pairwise relationships, we construct pair
proposal embeddings by concatenating the queries of two instances. Since seman-
tic relations occur only between tool-tool or tool-anatomy pairs, we incorporate
dataset priors to construct these pair proposals efficiently. Relation prediction
consists of two tasks: (1) detecting whether a relation exists (e ≥ 0.5), and (2)
classifying the relation type. Following [20], we employ: A 2-layer model for bi-
nary relation existence prediction (fexistence), followed by a 3-layer multi-label
classification model (fclassification) for relation type prediction.

pairn = [qi; qj ] where i ̸= j, i ∈ Ntool, j ∈ Ntool ∪Nanatomy

e = σ(fexistence(pairn)), e ∈ [0, 1]

if e ≥ 0.5, c = fclassification(pairn)
(1)

We use binary cross-entropy loss with sigmoid activations for both models.
Both models operate on the pair embeddings derived from the query vectors

of the last frame in the chunk. We refer to this method as CatSGG. To further
enhance temporal consistency, we extend this approach by aggregating query
vectors from all frames in the chunk. Inspired from [20], we apply max pooling
on same-class queries across these frames to obtain a single representative vector
per class.

These temporally enriched vectors are then used to create pair embeddings for
relation predictions. We refer to this temporally aware extension as CatSGG+.

4 Experiments

CatSGG: Semantic Segmentation: From preliminary experiments we find
that training M2F with the pretrained VideoSwin backbone from[8] achieves
equal performance with much faster convergence and improved generalizability
by subsampling the training data to 18 chunks per training video. Using this
configuration we train M2F on the 29 classes from CAT-SG, by merging pseudo-
masks based on CaDIS [9] with CAT-SG annotations. The model achieves a
mIoU of 92.12%, demonstrating its ability to generate initial scene graph nodes.
CatSGG: Semantic Relation Prediction: Using the frozen pretrained seg-
mentation model, we train the relationship prediction models with 18 chunks
per training video. Since semantic relations are relatively infrequent, we apply
sampling constraints to ensure that each selected chunk contains at least one
semantic relation. We apply a 0.5 threshold to filter predictions from both the
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relation existence and classification models.

ORacle [23]: We use ORacle as a benchmark, representing the most recent
SOTA method in scene graph generation within the surgical setting. ORacle
is a large vision-language model and does not require bounding boxes or scene
graph grounding, which makes it highly versatile and easily adaptable to various
domains. ORacle is originally developed for the 4D-OR dataset, consisting of
external views captured by overhead cameras in the operating room (OR). We
train and evaluate ORacle’s single view variant, both with and without tem-
porality (denoted as ORacleSV and ORacleSVT, respectively). To account for
the distribution of relation classes, we report F1 scores for each class, as well as
micro- and macro-averaged F1.

Downstream Task Baselines: Since semantic scene graphs connect the graph
and language domain, they can be used both in Graph Neural Networks (GNNs)
and Large Language Models (LLMs). We present baselines for both approaches,
leveraging our scene graphs to recognize surgical workflows and techniques. We
report Accuracy and F1 score as the well-established metrics for these tasks [7].
GNN: We use a 3-layer GATv2 [2] model as our GNN baseline. Like [10], we
encode node groundings (i.e., position and size in the image) as part of the
node features. Temporality is captured by connecting scene graphs from differ-
ent timesteps with temporal edges between nodes of the same class, creating a
dynamic scene graph.
LLM: We fine-tune a Llama 3.2 3B model for our downstream tasks using QLora
and its recommended parameters [5]. To represent our scene graphs, we prompt
the model with a list of entities and relations, along with their groundings pro-
vided as text (e.g., “<Object> at (<x>, <y>) with size <size>”). Temporality
is incorporated through a history mechanism: the prompts include scene graphs
from the last N steps prior to the current scene graph that needs to be classified.

5 Results & Discussion

Scene Graph Generation. Table 3 presents the results for scene graph gen-
eration on CAT-SG. Our CatSGG outperforms the SOTA ORacle by over 8
percentage points (p.p.) on Macro-F1. The inclusion of longer-term temporal
context in CatSGG+ further improves performance, allowing the model to bet-
ter capture the dynamically evolving semantic relations over time. Surprisingly,
adding temporality to ORacle (ORacleSVT) leads to a performance drop. We
hypothesize this is due to ORacle aggregating its predictions over time, which
can propagate mispredictions, thereby degrading overall performance. A video
of qualitative results for CatSGG+ is attached in the supplementary.

Surgical Workflow Recognition. As shown in Table 4, introducing se-
mantic relations leads to improvements in both accuracy and F1, surpassing
the baseline from [10] by over 5 p.p. This demonstrates that explicitly encoding
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Table 3. Scene Graph Generation Results on CAT-SG.
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ORacleSV 67.03 3.74 41.76 1.57 33.08 31.06 39.75 15.00 78.83 72.45 34.65
ORacleSVT 57.64 19.82 35.93 15.58 32.99 14.74 42.16 17.10 74.48 66.19 34.49
CatSGG 91.63 7.52 45.81 4.32 43.09 49.23 37.74 7.26 92.10 89.78 42.08
CatSGG+ 91.63 8.60 44.90 0.00 42.86 46.04 39.32 22.55 92.08 89.78 43.11

tool–anatomy relationships is beneficial for recognizing workflow stages that of-
ten hinge upon the correct sequence of instrument interactions. Notably, LLMs
performed competitively in our experiments without temporality, but were not
able to leverage temporal context or groundings for improved performance, de-
spite being much larger models.

Table 4. Surgical Workflow Recognition Results

Temporal Semantic Spatial
Window Relations Encoding Accuracy F1

Holm et al. [10] 1 frame ✗ CATARACTS ✓ 65.56 52.24
GATv2 1 frame ✓ CAT-SG ✓ 70.81 56.02
Llama 3.2 3B 1 frame ✓ CAT-SG ✗ 67.70 53.98
Llama 3.2 3B 1 frame ✓ CAT-SG ✓ 69.13 53.87
Holm et al. [10] 30 frames (90 s) ✗ CATARACTS ✓ 73.77 64.93
GATv2 30 frames (90 s) ✓ CAT-SG ✓ 78.63 70.15
Llama 3.2 3B 30 frames (90 s) ✓ CAT-SG ✗ 29.02 5.52

Surgical Technique Recognition.Table 5 shows that our GATv2 model,
utilizing temporal graphs sampled at 5 fps, achieves the highest accuracy and
F1 scores. Interestingly, longer temporal windows sampled with lower resolution
(50 s at 1 fps) result in lower accuracy, suggesting that the fine-grained instru-
ment motions crucial for distinguishing specific techniques occur within shorter
time spans. This highlights the value of our dataset being annotated at 5 fps.
Furthermore, ablating spatial features degrades performance, confirming that
precise tool positioning is vital for differentiating lens-breaking strategies.

Table 5. Surgical Technique Recognition Results

Temporal Window Spatial
(sampled fps) Features Accuracy F1

GATv2 10 s (5 fps) ✓ 68.75 ± 4.11 48.40 ± 1.72
GATv2 50 s (1 fps) ✓ 66.34 ± 1.38 41.31 ± 1.83
GATv2 10 s (5 fps) ✗ 64.48 ± 1.15 44.52 ± 1.58
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6 Conclusion

In this paper, we introduce CAT-SG, a large, fine-grained scene graph dataset
specifically designed to understand complex workflows in cataract surgery. By
capturing not only the presence of surgical instruments and anatomical struc-
tures but also their intricate interactions, CAT-SG provides an unprecedented
level of detail for modeling real-world procedural variations. Alongside the dataset,
we propose CatSGG, a novel scene graph generation model that leverages pre-
trained video backbones and efficiently processes both spatial and temporal in-
formation. The holistic view offered by CAT-SG has the potential to enhance a
wide range of applications, from automated skill assessment and decision sup-
port to advanced surgical training. Furthermore, this structured representation
of surgical procedures promotes more transparent and explainable approaches,
as each relationship can be precisely interpreted in a clinical context. Ultimately,
this can improve patient outcomes and support surgeons in delivering safer, more
efficient care.
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