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Abstract. Deep learning-based medical image classification techniques
are rapidly advancing in medical image analysis, making it crucial to de-
velop accurate and trustworthy models that can be efficiently deployed
across diverse clinical scenarios. Concept Bottleneck Models (CBMs),
which first predict a set of explainable concepts from images and then
perform classification based on these concepts, are increasingly being
adopted for explainable medical image classification. However, the in-
herent explainability of CBMs introduces new challenges when deploying
trained models to new environments. Variations in imaging protocols and
staining methods may induce concept-level shifts, such as alterations in
color distribution and scale. Furthermore, since CBM training requires
explicit concept annotations, fine-tuning models solely with image-level
labels could compromise concept prediction accuracy and faithfulness - a
critical limitation given the high cost of acquiring expert-annotated con-
cept labels in medical domains. To address these challenges, we propose
a training-free confusion concept identification strategy. By leveraging
minimal new data (e.g., 4 images per class) with only image-level labels,
our approach enhances out-of-domain performance without sacrificing
source domain accuracy through two key operations: masking misacti-
vated confounding concepts and amplifying under-activated discrimina-
tive concepts. The efficacy of our method is validated on both skin and
white blood cell images. Our code is available at: https://github.com/
riverback/TF-TTI-XMed.

Keywords: Test-time improvement · Inherent explainability · Concept
bottleneck model.

https://github.com/riverback/TF-TTI-XMed
https://github.com/riverback/TF-TTI-XMed


2 H. He et al.

PBC Scirep RabbinWBC
Label: Monocyte
- Granule type: coarse, nil, round, small

should be nil but is under-activated in Scirep due to 

different image brightness, results in coarse.

- Cytoplasm color: purple blue, light blue, blue

concept shift to pink for RabbinWBC due to new 

staining methods, but there is no correct option.

······

Fitzpatrick 17k

malignant benign malignant benign

Diverse Dermatology Image (DDI)
Confusion in the concept

prediction across domains:
- Skin tones

- Body parts

- Artifacts like rulers

- Imaging resolution

- ······

Fig. 1. Challenges when deploying CBMs to new environments: the concept features
across different domains may vary intensively and this may result in under-activated
discriminative concepts like the nil granule type for monocytes, or shifted concepts like
the pink cytoplasm color in RabbinWBC (which are mostly blue tones in the PBC
dataset). However, annotating fine-grained concept labels for the new data is costly
due to the expertise, and directly fine-tuning with image-level labels may lead to over-
fitting and degrade source domain performance.

1 Introduction

The development and integration of deep learning technologies have greatly
transformed the field of medical image analysis and achieved remarkable progress
in multiple medical fields [2,23,32,35]. However, the particularity of medical ap-
plications poses additional challenges to the explainability of deep learning mod-
els, such as checking whether the models are reliable [9], fair [4], and robust [3].
However, for a long time, there has been a trade-off between model explainabil-
ity and accuracy in the field of deep learning, and the accuracy of explainable
models is often significantly lower than that of their black-box counterparts [11],
which limits their application in real-world medical scenarios where accuracy is
prioritized [26]. As an emerging self-explainable model architecture, the concept
bottleneck model (CBM [17]) uses a set of interpretable concepts as the interme-
diate representation of images and then relies on an interpretable linear classifi-
cation layer to achieve interpretable image classification. When an accurate and
sufficient concept set is provided, CBMs can often maintain good explainability
and achieve performance comparable to that of black-box models and thus have
been widely applied to medical image classification tasks [6,15,25,33].

However, deploying CBMs to a new environment while maintaining explain-
ability is challenging, e.g., a new medical institution or imaging device. Firstly,
the concept features across domains may vary intensively (as shown in Fig. 1),
which poses challenges for both fine-tuning in the target domain and accurate
concept prediction, and the clinical knowledge required for annotating fine-
grained medical concepts further exacerbates this drawback. Although some
label-free methods have been proposed to construct CBMs by leveraging the
capabilities of large language models or vision-language models [12,24,34], it is
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difficult for us to assess whether the generated medical concepts are accurate
and faithful [14]. Secondly, even if there is concept-level labeled data in the tar-
get domain, unless sufficient, direct fine-tuning of the model may lead to severe
over-fitting and also degrade the model’s performance on the source domain [22].
Moreover, fine-tuning with only image labels may also undermine the faithful-
ness of CBMs, as the model may forget previously learned knowledge and fail to
leverage the desired concepts. [21].

To address the above issues, we propose a training-free confusion con-
cept identification strategy to improve the test-time performance of CBMs.
By identifying and adjusting confusing concepts during the test phase, we can
mask misactivated confounding concepts or amplify under-activated
discriminative concepts. More importantly, our method does not harm the
faithfulness of the concept prediction procedure and in-domain performance. Ex-
perimental results on skin and white blood cell images demonstrate that, with
minimal data with only image labels (e.g., only 4 images per class), our method
achieves performance comparable to fine-tuning, without sacrificing the source
domain’s accuracy while keeping the explainability of concept bottleneck models.

2 Related Work

2.1 Concept Bottleneck Models for Medical Image Classification

The concept bottleneck model (CBM [17]) maps visual images to a space com-
posed of predefined concepts, extracts intermediate concepts as the representa-
tion of the images, and uses an interpretable linear classifier for classification.
Due to its inherent explainability, CBMs have been extensively utilized in med-
ical image classification tasks, including white blood cell classification [25], skin
disease classification [15], fundus disease classification [6], and the classification
of thorax diseases [33]. Among these works, Pang et al. proposed to align CBMs
with clinical knowledge during training to improve out-of-domain (OOD) per-
formance, but needed additional clinical knowledge labels to indicate concept
preference [25]. Yang et al. proposed Knowledge-enhanced Bottlenecks that used
language models and PubMed as the knowledge resources for making CBMs less
sensitive to domain shift [33]. Nevertheless, existing methods for improving the
OOD performance of CBMs all require additional training or the integration of
a vision-language model like CLIP to help concept prediction at test time [5],
which can be challenging to quickly deploy in new environments.

Beyond these methods, CBM itself is also renowned for its test-time con-
cept intervention capability, which permits users to modify activation values
of specific concepts at the concept bottleneck [28]. However, when applied to
OOD medical images, such interventions often rely on specialized medical knowl-
edge and fail to consistently improve model performance across diverse datasets,
thereby limiting their generalizability and practical utility. In response to this
challenge, the Concept Bottleneck Memory Model (CB2M) [30] introduces a
two-fold memory module designed to capture model errors during training and
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validation phases, utilizing these memories to bolster test performance. Nonethe-
less, CB2M fails to adequately explore the issue of concept shift in OOD scenar-
ios, which remains a critical concern. Another prominent approach for adapt-
ing pre-trained models to distribution shifts is test-time adaptation (TTA) [20].
TTA methods typically exploit unlabeled test-domain data or data streams to
facilitate domain adaptation. However, the two-step inference process of CBM
necessitates the preservation of the model’s concept prediction fidelity during the
TTA phase. Regrettably, research on enhancing CBM’s test-time performance
while maintaining fidelity remains unexplored.

3 Method

3.1 Preliminary: Concept Bottleneck Model

Formally, consider an image dataset D = {(xi, ci, yi)} where x denotes an image,
c = {c1, c2, · · · , cL} is L predefined concepts, and y ∈ {0, 1}K×1 is the image
label from K target classes. As shown in Fig. 2 (a), a CBM first predicts concepts
using a concept predictor g and then predicts targets based on the concepts using
a classifier f :

ĉ = g(x), ŷ = f(ĉ) (1)

In this work, we jointly train g and f to make the framework compatible with
additional optimization strategies such as incorporating clinical knowledge [28].

f̂ , ĝ = argmin
f,g

|D|∑
i

[φLc(g(xi); ci) + Ly(f(g(xi)); yi)] (2)

where Lc and Ly are loss functions for concept prediction and class prediction
respectively, for some φ > 0.

3.2 Confusion Concept Identification Strategy

We first give some observations into the concept prediction procedure on OOD
data. As shown in Fig. 2 (b), there are typically two types of confusion concepts:
1) under-activated discriminative concepts that are crucial for predicting
the target class but are less activated than other concepts because of feature
distribution shifts caused by different image brightness, resolution and so on;
and 2) misactivated confounding concepts concepts that are unable to be
faithfully activated in the OOD dataset due to huge changes in feature represen-
tation, like the blue tones cytoplasm color is changed to pink in the RabbinWBC
dataset. Based on these observations, we propose our confusion concept iden-
tification strategy which leverages the concept activation memory during the
in-domain (ID) model development and then uses minimal image-level labeled
data from the target domain to identify the two types of confusion concepts.
As presented in Fig. 2 (c), we save the mean (cID) and the standard deviation
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Fig. 2. Method overview: (a) a trained CBM can perform explainable classification
with accurate concepts, (b) but fails on the out-of-domain (OOD) data because of two
types of confusion concepts, under-activated discriminative concepts and misactivated
confusing concepts. So we (c) propose a confusion concept identification strategy and
(d) use the concept mask m to amplify or mask these concepts.

(σID) for concept activation value on the validation set Dval as the concept
activation memory for each target class k:

{cID,σID}k = {(c1, σ1), · · · , (cL, σL)}k, k ∈ {1, 2, · · · ,K} (3)

where the subscript k denotes the k-th element of a set. For example, the concept
activation memory of class k for c1 is calculated as:

c1 =
1

|Dval(k)|

|Dval(k)|∑
i,yi=k

g(xi)[0], σ1 =

√√√√|Dval(k)|∑
i,yi=k

1

|Dval(k)|
(g(xi)[0]− c1)2 (4)

Given a set of image-level labeled OOD images DOOD = {xi, yi}N×K
i=1 where N

is the number of images for each class and is usually small, we iterate these data
once to get the concept activation information in the target domain. The OOD
concept activation information for class k is:

ĉOOD,k =
{
{ĉ1i }

N
i=1, · · · , {ĉLi }

N
i=1

}
k

(5)

then we can identify confusing concepts for class k by calculating the stability
of concept activation (e.g., standard deviation) between ID and OOD samples:

cconfusion,k =
⋃

i=1,··· ,L

{
ci

∣∣∣∣ σ[concat( cID,k[i], ĉOOD,k[i] )] ≥ τ · σID,k[i]

}
(6)

where σ denotes the computation of the standard deviation, the factor τ > 1
ensures the OOD concept activation variation is larger than that of ID. We use
τ = 1.4 for skin and τ = 1.1 for WBC. A concept is deemed misactivated if
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it confuses more than half of the classes. The remaining confusing concepts are
treated as under-activated discriminative concepts if their in-domain activation
probability for the corresponding class exceeds 0.5. Our intuition is that con-
cepts with low variance in the source domain are likely class-discriminative; thus,
large fluctuations in the test domain indicate unreliability. Conversely, concepts
with high source-domain variance are likely non-discriminative and are natu-
rally downweighted by Eq.(6), which compares against in-domain variance. If
such noisy concepts are still activated by Eq.(6), they tend to confuse all classes
and should therefore be masked.

3.3 Confusion Concepts Activation Manipulation

Upon acquiring the two categories of confusion concepts, we can adjust the ac-
tivation levels of these concepts to enhance test-time performance. Towards this
end, we put forward two straightforward yet efficacious operations: (1) Mask-
ing Misactivated Confounding Concepts, and (2) Amplifying Under-
Activated Discriminative Concepts. As depicted in Fig. 2 (d), we initialize
a concept mask m with a value of 1. We mask the misactivated confounding
concepts by setting the corresponding values to zero. Meanwhile, to amplify the
under-activated discriminative concepts, we multiply them by a factor greater
than 1; for the sake of simplicity, we adopt 2 in this paper. During inference, we
simply multiply the concept mask m element-wise with the predicted concepts
ĉ, and use the result as input to the final classifier f :

ŷnew = f(m⊙ ĉ) = f(m⊙ g(x)) (7)

4 Experiment

Settings To evaluate the effectiveness of our method, we conduct experiments
on two medical image classification tasks: dermatology and white blood cell
(WBC) classification. For skin dataset, we train a dermatology classifier (K = 2)
using concept annotations from the Fitzpatrick 17k dataset [10] and the SkinCon
dataset [8]. We use the same concepts (L = 22) with [25] to train the concept
predictor. The Fitzpatrick 17k dataset (|D| = 3, 479) is used as the in-domain
dataset and the Diverse Dermatology Images (DDI) dataset [7] (|D| = 656)
serves as the out-of-domain dataset. The DDI dataset focuses on diverse skin
tones and uncommon diseases, which introduces variability in skin tones, lighting
conditions, and disease presentation. For the WBC dataset, we use the PBC
dataset [1] combined with concept annotations (L = 11) from the WBCAtt
dataset [31]. We train the models (K = 5) following the data split from [31].
The Scirep dataset [19] (|D| = 2, 019) and the RaabinWBC dataset [18] (|D| =
4, 339) are used as out-of-domain datasets. These WBC datasets include images
captured under different staining conditions and imaging devices, resulting in
different cell appearances and textures. Example Images are shown in Fig. 1.

We separately use VGG16 [29] and ResNet34 [13] pre-trained on ImageNet
as g and use a linear classifier as f to build CBMs. For both tasks, we use an
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Table 1. Classification accuracy and F1 score on skin images. N is the number of
image-level labeled images for each class in the out-of-domain dataset.

Fitzpatrick 17k (In-domain) DDI (Out-of-domain)CBM
Backbone Accuracy F1 Score Accuracy F1 Score

VGG16 75.28 75.28 65.72 58.72
+F (N=8) 61.40↓ 13.88

57.09↓ 17.38
69.65↑ 3.93

56.58↓ 2.14

+Ours (N=4) 74.53↓ 0.75
74.36↓ 0.92

70.28↑ 4.56
60.46↑ 1.74

+Ours (N=8) 74.42↓ 0.86
74.25↓ 1.03

70.44↑ 4.72
60.75↑ 2.03

VGG16+K 76.95 76.93 62.11 56.00
+F (N=8) 64.79↓ 12.16

63.43↓ 13.50
62.11 59.44↑ 3.44

+Ours (N=4) 76.95 76.94↑ 0.01
66.19↑ 4.09

57.55↑ 1.55

+Ours (N=8) 76.95 76.95↑ 0.02
65.88↑ 3.77

57.16↑ 1.16

ResNet34 77.72 77.72 62.89 59.09
+F(N=8) 68.61↓ 8.78

68.60↓ 9.12
64.94↑ 2.05

60.22↑ 1.13

+Ours(N=4) 77.98↑ 0.26
77.97↑ 0.25

64.15↑ 1.26
60.13↑ 1.04

+Ours(N=8) 77.32↓ 0.40
77.22↓ 0.50

70.13↑ 7.23
62.28↑ 3.20

ResNet34+K 77.38 77.29 62.26 58.48
+F (N=8) 67.61↓ 9.77

67.61↓ 9.68
67.14↑ 4.88

59.17↑ 0.69

+Ours (N=4) 78.41↑ 1.12
78.41↑ 1.03

66.98↑ 4.72
60.48↑ 2.00

+Ours (N=8) 77.84↑ 0.46
77.73↑ 0.44

68.55↑ 6.29
59.86↑ 1.38

AdamW optimizer [16] with weight decay set to 0.01. The batch size is set to 64.
The learning rate is set to 1e-4. We use cross-entropy loss with label smoothing
(ϕ=0.05) and φ in Eq. 2 is set to 1. We follow [25] to train 30 epochs per run
and also implement CBMs integrated with clinical knowledge (denoted as +K).
Except for the additional loss functions used in [25], other parameters are kept
the same for both vanilla CBMs and the clinical knowledge integrated CBMs.
For fine-tuning experiments (denoted as + F), we use the same parameters and
settings with in-domain settings. The same images (N for each class) are used
for fine-tuning and our confusion concept identification strategy.

Results The main results for skin images are presented in Table 1 and those
for WBC images are in Table 2. Without any fine-tuning or fine-grained concept
labels, our method can enhance the classification performance of the CBM model
on out-of-domain datasets. For the vanilla CBM with VGG16 as the backbone,
with only 8 images from target domain (N=4 per class), our method achieves
an accuracy improvement of 4.56 and an F1 score improvement of 1.74 on the
DDI dataset (bold in Table 1), even surpassing out-of-domain performance when
using twice the number of images for fine-tuning. More importantly, under nearly
all experimental settings, our method can maintain or even improve the model’s
in-domain performance. In contrast, fine-tuning may lead to a drastic decline in
in-domain performance. For example, the accuracy drops from 99.77 to 62.96 on
WBC classification, and the F1 score drops from 99.67 to 60.95 (bold in Table 2).
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Table 2. Classification accuracy and F1 score on WBC images. N is the number of
image-level labeled images for each class in the out-of-domain dataset.

CBM
Backbone

In-domain Dataset Out-of-domain Datasets

PBC1 Scirep RaabinWBC

Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

VGG16 99.71 99.61 84.10 70.85 75.06 50.14
+F (N=4) 97.42/96.16 96.96/97.09 88.01 75.55 86.89 78.34
+Ours (N=4) 99.71/99.52 99.61/99.41 84.25 71.45 76.05 51.64
+Ours (N=8) 99.32/99.71 99.45/99.74 86.43 72.18 78.43 55.09

VGG16+K 99.84 99.77 84.00 67.37 77.21 51.89
+F (N=4) 91.87/96.45 90.64/96.10 84.50 77.20 88.20 82.62
+Ours (N=4) 99.74/99.84 99.66/99.76 84.84 68.59 77.69 53.42
+Ours (N=8) 99.71/99.61 99.61/99.62 86.53 70.38 78.77 55.15

ResNet34 99.77 99.67 80.29 69.34 37.35 27.12
+F (N=4) 92.16/62.96 89.90/60.95 90.59 85.85 75.71 72.58
+Ours (N=4) 99.74/99.81 99.65/99.74 81.72 71.74 54.99 35.94
+Ours (N=8) 99.81/99.81 99.74/99.75 81.72 71.74 50.86 36.50

ResNet34+K 99.74 99.65 83.01 69.35 16.73 10.17
+F (N=4) 82.74/71.51 77.27/69.92 83.95 72.60 83.43 75.83
+Ours (N=4) 99.84/99.77 99.79/99.69 84.25 71.14 39.09 22.93
+Ours (N=8) 99.68/99.77 99.56/99.69 84.35 72.40 59.55 24.20

1: test separately for using Scirep or RabbinWBC as the out-of-domain dataset.

Prediction: basophil
- granule type: 
coarse (0.51) nil (0.48) round (0) small (0.01)
- cytoplasm color:
blue (0.71) purple blue (0.21) light blue (0.08)
- cell size: 
small (0.89) big (0.11)

Prediction: monocyte
- granule type (amplified): 
coarse (0.51) nil (0.96) round (0) small (0.01)
- cytoplasm color (masked):
blue (0.71) purple blue (0.21) light blue (0.08)
- cell size (masked): 
small (0.89) big (0.11)

afterbefore

monocyte

before

after

Fig. 3. Visualization of the inference procedure and focus areas of the model before
and after applying our test-time improvement strategy.

Are Confusion Concepts Manipulated Correctly? We visualize the infer-
ence process and utilize Grad-CAM [27] to highlight the important features that
the model relies on for predictions to see whether the concept manipulation is
faithful. As presented in Fig. 3, the model becomes more focused on the target
object after our confusion concept manipulation, indicating better faithfulness
during inference, in addition to the improvement of classification accuracy.

5 Conclusion

In this study, we propose a novel training-free confusion concept identifica-
tion strategy to enhance the adaptability of concept bottleneck models (CBMs)
for out-of-domain data. Our approach requires only minimal image-level an-
notations, yet effectively improves test-time performance while maintaining in-
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domain accuracy and model explainability. Both quantitative evaluations and
visual analyses demonstrate the efficacy of our method, revealing the potential of
explainability-guided test-time adaptation methods. Future research may focus
on further reducing the labeling requirement and developing label-free methods
for adopting explainable medical classification models.
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