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Abstract. Focal liver lesions (FLL) are common clinical findings during
physical examination. Early diagnosis and intervention of liver malignan-
cies are crucial to improving patient survival. Although the current 3D
segmentation paradigm can accurately detect lesions, it faces limitations
in distinguishing between malignant and benign liver lesions, primarily
due to its inability to differentiate subtle variations between different
lesions. Furthermore, existing methods predominantly rely on special-
ized imaging modalities such as multi-phase contrast-enhanced CT and
magnetic resonance imaging, whereas non-contrast CT (NCCT) is more
prevalent in routine abdominal imaging. To address these limitations, we
propose PLUS, a plug-and-play framework that enhances FLL analysis
on NCCT images for arbitrary 3D segmentation models. In extensive
experiments involving 8,651 patients, PLUS demonstrated a significant
improvement with existing methods, improving the lesion-level F1 score
by 5.66%, the malignant patient-level F1 score by 6.26%, and the benign
patient-level F1 score by 4.03%. Our results demonstrate the potential of
PLUS to improve malignant FLL screening using widely available NCCT
imaging substantially. Code is availabel at https://github.com/alibaba-
damo-academy/plug-and-play-diagnosis.
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1 Introduction

The incidental detection of focal liver lesions (FLLs) during routine physical
examination has become increasingly prevalent [15]. However, accurate differ-
entiation between malignant and benign lesions remains a significant challenge
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for radiologists due to the subtle heterogeneity present in images. Benign lesions
are usually harmless or require regular monitoring, whereas malignant tumors
require immediate intervention as delayed diagnosis can lead to rapid disease
progression and poor outcomes [2,15]. In this scenario, early detection and dif-
ferentiation of the malignant lesions plays a crucial role in patient survival, with
five-year survival rates exceeding 70% for early-stage diagnoses, underscoring
the critical importance of effective screening programs, particularly for high-risk
populations with chronic liver conditions [5].

Contrast-enhanced CT (CECT) and magnetic resonance imaging (MRI) are
primary modalities for FLL diagnosis due to their high sensitivity [9]. How-
ever, both face significant limitations in the context of large-scale opportunistic
screening. CECT requires contrast agents that carry risks of nephrotoxicity and
allergic reactions, restrict follow-up examination frequency, and substantially
increase healthcare costs. MRI, a radiation-free imaging modality, is unsuitable
for large-scale screening due to limited availability, lengthy protocols, and device
contraindications. Meanwhile, non-contrast CT (NCCT) presents advantages for
large-scale malignancy screening [27], combining widespread availability, cost-
effectiveness, rapid acquisition, and absence of contrast-related risks, making it
ideal for broad FLL screening.

Despite NCCT’s advantages, its fundamental reliance on tissue density differ-
ences makes it challenging to detect FLLs, especially early-stage or subtle lesions
with minimal distinction against surrounding tissues, inherently hindering detec-
tion and complicating classification due to subtle variations among tumor types.
Chronic liver conditions also further complicate tumor identification, e.g., fatty
liver, cirrhosis, and biliary dilation. While radiologists’ expertise is crucial, the
subtle imaging characteristics make diagnosis highly experience-dependent and
prone to errors, highlighting the need for computer-aided methods.

Recently, deep learning methods have shown promise in enhancing automatic
FLL detection by accurately capturing the lesion patterns on CT images [25].
Although well-configured CNN-based architectures remain competitive for gen-
eral medical image segmentation [11,23,24], FLL classification presents unique
challenges beyond detection. Despite various architectural innovations including
Transformers [7], and Mamba-based designs [18], the accurate subtype classi-
fication remains a key challenge. MaskFormer-based approaches [4,3], despite
their promising results through dense cross-attention, lack explicit mechanisms
to model crucial anatomical relationships between lesions and liver tissue. Ex-
isting classification methods [29,22,31] typically focus on isolated lesion-level or
patient-level predictions, overlooking the complex interplay between global liver
morphology and local lesion characteristics. While recent approaches [17,20,26]
attempted global-local feature modeling, they failed to capture clinically relevant
and multi-scale liver pathology information. Drawing insights from multi-organ
cohesion analysis [13], we propose a classification-focused framework that em-
phasizes feature discrimination within pre-detected regions of interest (ROIs),
addressing the limitations of detection-based approaches.
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To address these limitations, we propose a PLUg-and-play enhanced liver
lesion diagnosiS model (PLUS), a framework compatible with arbitrary 3D seg-
mentation models for improved FLL analysis on NCCT. PLUS introduces three
key components: (1) a hierarchical dual attention (HDA) mechanism facilitat-
ing bidirectional exchange between global liver and local lesion features; (2)
a graph-based prior reasoning (GPR) module selectively leveraging prior pre-
trained segmentation knowledge for FLL type classification; and (3) a combined
optimization strategy for lesion-level detection with patient-level diagnosis.

We curated the largest NCCT FLL dataset containing 28,853 annotated le-
sions from 8,651 patients and healthy subjects. PLUS achieves F1 scores of
65.11% for lesion-level detection, 90.12% for malignant, and 73.10% for benign
patient-level diagnosis, surpassing other methods. Through extensive ablations
and visualizations, we demonstrate PLUS’s effectiveness and potential in enhanc-
ing large-scale FLL screening and differentiation via widely available NCCT.

2 Method

2.1 Problem Definition

Considering a 3D NCCT volume I ∈ RH×W×D, the PLUS framework builds
on an arbitrary pre-trained segmentation model ϕ(·) that processes the input
volume and generates segmentation masks M = ϕseg(I) ∈ {0, 1}H×W×D and
preliminary lesion classification logits P = ϕcls(I) ∈ RC , where C denotes the
number of lesion categories. The segmentation mask M inherently contains two
anatomical regions: the liver region MH and the set of lesion instances S =
{(Msi , Pi)}Ni=1, which serve as spatial attention guides for subsequent feature
extraction, where N is the number of detected lesions, the objective of the plug-
in framework fθ(·) is to leverage these segmentation-derived priors and enhance
the final classification prediction through fθ(I,MH ,S).

2.2 Plug-and-Play Enhanced Liver Lesion Diagnosis

For the input NCCT volume I and its segmentation masks of liver MH and pre-
segmented lesion instances S = {(Msi , Pi)}Ni=1 from model ϕ(·), the framework
extracts region-specific features using two encoders: FH = EH

θ (I⊙MH) for liver
tissue and Fsi = ES

θ (I⊙Msi) for each lesion instance i, see Fig. 1. The resulting
feature tensors FH and {Fsi}Ni=1 encode contextual information from the liver
and detailed characteristics of individual lesions, respectively.
Hierarchical Dual Attention. The initial representations lack cross-scale fea-
ture interaction between anatomical context and local lesion patterns. To enable
effective multi-scale feature interaction, we propose HDA, a module enabling
bidirectional intra-/inter-scale semantic fusion with liver and lesions.

Given lesion features Fs and liver features FH , the HDA mechanism can be
formulated as concatenated features F = Fθ1([DCA(Pooli(FH);FS)]

K
i=1), where

the dual cross-attention (DCA) combines bidirectional attention flows:

F ′
x = Fθ2(A(Fx, Fy)), DCA(Fx, Fy) =

[
F ′
x;Fθ3(A(Fy, F

′
x))

]
, (1)
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Fig. 1: Illustration of the overall pipeline of PLUS.
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Fig. 2: Comparison of classifier enhancement strategies: (a) Knowledge Distilla-
tion, (b) Gated Fusion, (c) Weighted Fusion, (d) Graph-Based Prior Reasoning.

with attention operation A(Fa, Fb) = Attn.(TQ(Fa), TK(Fb), TV (Fb)), T{Q,K,V }
are query/key/value projection operations, Pooli(·) represents multi-scale pool-
ing at the i-th scale, Fθ are learnable linear projections, and the standard at-

tention operation is defined as Attn.(Q,K,V) = softmax
(

QK⊤
√
d

)
V.

The design of HDA is motivated by two key clinical observations in liver
lesion diagnosis. First, radiologists zoom in and out the image when examining
lesions, as different lesions exhibit distinctive patterns on various scales. HDA
mimics this diagnostic process through efficient multi-scale feature interaction
with progressive pooling operations. Furthermore, the interpretation of the lesion
depends heavily on the surrounding liver conditions, where bidirectional interac-
tion is crucial. For example, a suspicious lesion of a cirrhosis patient tends to be
a hepatocellular carcinoma, while a low-density region on the liver of a steatosis
patient is probably a false positive tumor.
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Algorithm 1 Graph-based Prior-Aware Reasoning

Require: Features F ∈ RB×D, Prior Prediction P ∈ RB×C , Prototypes Vθ ∈ RC×D

Ensure: Prior-aware Features F′ ∈ RB×D

1: Fψ = ψθ(F),Vw = Pψ ×Vθ ▷ Feature projection and weighted prototypes
2: G = [Fϕ;Vθ] ▷ Node set construction: B original nodes + B prototypes nodes

3: Q,K,V = Wq(G),Wk(G),Wv(G); αij = softmax(
qT
i kj√
d

), mi =
∑2B
j=1 αijvj

4: return F′ = F + Fθ([Fϕ ∥ m1:B ]) ⊙Vw ▷ Updated feature of central node

Graph-based Prior-aware Reasoning. We propose a graph-based prior-
aware reasoning (GPR) module to refine potentially inaccurate prior lesion pre-
dictions through graph neural networks [12]. As outlined in Algorithm 1 and
(Fig. 2(d)), GPR constructs a homogeneous graph G where enhanced features
F serve as center nodes, connected with class-specific prototypes Vθ as surround-
ing nodes. Instead of directly using the initial prior prediction P, which may be
unreliable [16], we leverage it as a conditional message to guide prototype-based
reasoning. Through message passing and self-attention [21] between features and
prototypes, the graph-based structure automatically learns to enhance relevant
prior knowledge while suppressing unreliable predictions, enabling more robust
feature enhancement compared to conventional fusion methods.

Training Paradigm. Clinically, the diagnosis of FLL through medical imaging
follows a systematic process: radiologists first analyze individual lesion char-
acteristics, and then compile these findings into patient-level diagnoses. Both
lesion-level and patient-level analyses are crucial: the former provides detailed
lesion-level insights while the latter guides overall treatment planning. This is
particularly challenging in cases with multiple lesions, where effective aggre-
gation of lesion-level information becomes essential for accurate patient-level
assessment. Inspired by this clinical workflow, we propose a comprehensive op-
timization strategy that aligns with radiologists’ decision-making process.

The lesion level loss LL = − 1
N

∑N
i

∑C
c zc(1−pi,c)

γyi,c log pi,c addresses class
imbalance through lesion-specific weights zc, and focal parameter γ, with N le-
sions across C categories. The overall lesion-level loss is the average of the indi-
vidual losses for each patient’s lesions. Taking malignancy prediction as example,
the patient-level loss LP = − 1

M

∑M
j [Yj log(maxi∈Sj p

j
i,malig) + (1 − Yj) log(1 −

maxi∈Sj
pji,malig)] aggregates malignancy probabilities over M patients, priori-

tizing clinically critical findings. Screening loss LS = − 1
M

∑M
j [yj log qj + (1 −

yj) log(1 − qj)] uses qj = maxi∈Sj (pi,malig ∥ pi,beni.) to detect whether each
subject has any tumor. The overall loss function integrates three hierarchically
structured components Ltotal = αLL+βLP+(1−α−β)LS . This tripartite design
validates PLUS through the diagnostic cascade: screening → lesion analysis →
diagnosis, ensuring consistency across clinical workflow stages.
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Table 1: Performance comparison on test set. (•: malignant, ◦: benign.)
Method

Lesion-level Patient-level Diagnosis Screening
F1 Prec. Recall F1• Prec.• Recall• F1◦ Prec.◦ Recall◦ F1 Acc.

nnUNet [10] 56.19 46.43 71.16 80.91 74.93 87.92 70.34 75.27 66.02 87.45 88.02
+PLUS 62.97 57.62 69.42 83.74 81.56 86.04 72.68 77.53 68.41 87.83 88.45

Mask2Former [3] 58.19 49.56 70.48 82.80 80.32 85.45 67.51 72.02 63.54 87.78 88.14
+PLUS 63.46 58.85 68.87 86.02 89.32 82.97 72.18 76.54 68.30 87.96 88.84

PLAN [26] 59.45 48.27 77.39 83.86 75.38 94.49 69.07 73.63 65.05 88.89 89.00
+PLUS(distill.) [6] 61.08 58.48 63.94 88.47 87.58 89.38 71.39 79.67 64.67 88.39 89.08
+PLUS(gated) [1] 57.92 51.47 66.24 88.53 86.49 90.68 66.39 84.93 54.50 88.82 88.96

+PLUS(weighted) [28] 64.47 56.38 75.26 87.84 86.12 89.65 64.41 76.75 55.50 89.04 89.42
+PLUS(GPR) 65.11 60.28 74.56 90.12 88.56 91.74 73.10 76.60 69.90 88.97 89.73

Table 2: Ablation study on proposed components. (•: malignant, ◦: benign.)

Method
Lesion-level Patient-level Diagnosis

F1 Prec. Recall F1• Prec.• Recall• F1◦ Prec.◦ Recall◦
PLAN 59.45 48.27 77.39 83.86 75.38 94.49 69.07 73.63 65.05
+HDA 64.67 58.72 71.96 89.25 87.53 91.05 71.56 75.33 68.16
+GPR 65.87 60.51 72.23 89.54 88.24 90.89 71.84 76.12 68.02

+Comb. Loss 65.11 60.28 74.56 90.12 88.56 91.74 73.10 76.60 69.90
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Fig. 3: Quantitative analysis. (a) Binary classification significance test. (b)
Lesion-wise AUC comparisons. (C) Patient-wise confusion matrix.

3 Experiments

Dataset. We constructed a large-scale NCCT dataset comprising 8,651 patients
with or without liver tumors from two medical centers. To efficiently ensure
high-quality annotations, we adopted a human-in-the-loop approach where two
senior radiologists (>10 yrs experience) first manually annotated a subset of
cases to train a preliminary model, which then generated results on remain-
ing samples for iterative refinement. Ground-truth lesion diagnosis comes from
pathology reports, imaging features, and follow-up data. The dataset includes
28,853 FLLs in nine types, including malignant lesions : hepatocellular carcinoma

Ethics approval numbers by institutional review board: 2024PS954K, IIT20220356B-R2.
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(HCC; 3,321), cholangiocarcinoma (CCA;1,866), metastasis (Meta;8,299), other
malignant (34); and benign lesions: hemangioma (Heman;1,381), focal nodular
hyperplasia (128), calcification (755), cyst (13,049), other benign (23). We strat-
ified the dataset into training (6,500), validation (951), and testing (1,200) sets.

Implementation Details. The experiments were conducted on a single NVIDIA
A800 GPU. All pre-segmentation models ϕ(·) were trained using 5-fold cross-
validation on the training set for 1,000 epochs. The network architecture consists
of two 3D ResNet-18 [8] encoders, i.e, ES

θ and EH
θ , to capture lesion-specific and

global context liver features. For each detected lesion from ϕ(·), we extracted
volumetric ROIs of size 64 × 64 × 16 voxels centered at the lesion. Input vol-
umes were pre-processed using the nnUNet [10] pipeline, including resampling
to isotropic voxel spacing and normalization with an abdominal window set-
ting. The network was trained for 100 epochs using the AdamW optimizer [14]
(learning rate=10−4, weight decay=0.05, batch size=2) with cosine annealing
scheduling. The loss weights are α = 0.5 and β = 0.3. For HDA, we set K = 4.

Main Experimental Results. We evaluate the proposed PLUS framework by
integrating it with three off-the-shelf liver lesion segmentation baselines with
high FLL detection sensitivity: nnUNet [10] is widely recognized as the de facto
gold standard in medical image segmentation with its robust generalizability [11];
Mask2Former [3] demonstrates superior performance in instance segmentation
with dense cross-attention architecture; and PLAN [26] extends Mask2Former
with improved anchor queries and foreground-enhanced sampling loss, achieving
state-of-the-art performance in joint liver tumor segmentation and diagnosis.

As summarized in Table 1, PLAN+PLUS achieves the best performance
across most metrics, with F1 scores of 65.11%, 90.12%, and 73.10% for lesion-
wise detection, malignant patient-level, and benign patient-level assessment, re-
spectively. Notably, the plugin PLUS demonstrates consistent performance im-
provements when integrated with existing architectures. Compared to vanilla
PLAN, PLAN+PLUS shows significant gains of 5.66% in lesion-wise F1 score,
6.26% in malignant patient-level F1 score, and 4.03% in benign patient-level
F1 score. Similar improvement patterns are also observed when applying the
plugin module to nnUNet and Mask2Former, validating the effectiveness and
architecture-agnostic robustness of PLUS.

Fig. 3 presents a comprehensive quantitative comparison between PLAN and
PLAN+PLUS. The probability correlation analysis in Fig. 3(a) demonstrates
that PLAN+PLUS increases the correct confidence score of each class than the
baseline PLAN, particularly for cases in the mid-probability range where classi-
fication is typically more challenging. Fig. 3(b) reveals substantial improvements
in both malignant vs. benign classification and the diagnosis of common lesion
types. The confusion matrices in Fig. 3(c) highlight PLAN+PLUS’s superior
performance through reduced false positives for malignant lesions, improved be-
nign lesion classification, and better identification of cystic lesions, suggesting
that PLUS effectively further enhances patient-wise classification accuracy.

Effect of GPR. To validate the effectiveness of GPR, we compare it with several
alternative fusion strategies as shown in Fig. 2, including distillation [6], gated-
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Fig. 4: Qualitative results showing ablation study of model components. Each
case is annotated with the predicted lesion category and its probability.

fusion [1], and weighted fusion methods [28]. Given the potential inaccuracies
in prior P and its dimensional imbalance with F, existing approaches show
limitations: knowledge distillation restricts priors to supervisory signals, gated
fusion lacks adaptability to varying prototype relevance, and weighted fusion fails
to capture complex feature-prior relationships. As shown in Table 1, GPR (last
row) addresses these challenges and outperforms them across different metrics
through GNN-based relationship modeling and adaptive feature aggregation.

Ablation Study. We conducted ablation studies to validate each component
of the PLUS framework. Starting with the PLAN baseline, adding HDA sig-
nificantly enhances lesion-level F1 by 4.40% and malignant patient-level F1 by
3.53%. GPR further improves performance, and after adding combined loss, de-
spite causing slight deterioration at the lesion level, it achieves optimal results
at the patient level with substantial gains in malignant and benign F1.

Saliency method visualizations (e.g., Grad-CAM [19,30]) show the baseline
exhibits diffuse attention, often missing critical regions. HDA focuses on diag-
nostically pivotal areas (e.g., fibrotic patterns, uneven liver border that indicates
cirrhosis, and gallstones that correlate with CCA) and resolves ambiguities be-
tween challenging subtypes. GPR refines attention to pathology-specific regions
by fusing segmentation priors with liver features. Combined, HDA+GPR pro-
duces anatomically coherent attention maps that capture both localized lesion
characteristics and structural context, confirming they enhance the model’s focus
on clinically meaningful regions.
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4 Conclusion

In this work, we present PLUS, a plugin framework that enhances existing seg-
mentation models for NCCT FLL analysis. PLUS further improves the state of
the art while maintaining architectural flexibility. Future work will extend this
paradigm to multi-modal imaging integration and real-world clinical trials to
support clinical decision-making and intervention.
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