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Abstract. Transformer-based architectures demonstrate strong perfor-
mance in medical image segmentation but face challenges due to compu-
tational redundancy and overparameterization, limiting their deployment
in resource-constrained settings. This study identifies redundant compu-
tations at the block level, particularly in the deeper layers of transformer
encoders, as well as in the token mixer and MLP within each layer, as
quantified by cross-layer activation similarity. To operationalize these
insights, we propose SlimFormer-3D, a lightweight U-shaped encoder-
decoder framework that prunes redundant computations at a granular
level. Using feature similarity metrics: Angular Distance and Centered
Kernel Alignment (CKA), we locate minimally impactful layers and in-
troduce gating factors to control token mixer and MLP module activa-
tions selectively. Experiments on BTCV, AMOS, and AbdomenCT-1K
3D abdominal CT datasets show SlimFormer-3D achieves competitive
Dice scores while significantly reducing computational redundancy by
3.5× and cutting model parameters by approximately 83% compared to
UNETR. Ablation studies confirm its balance between accuracy and ef-
ficiency, making it a promising solution for real-time 3D medical image
segmentation.

Keywords: Computational Redundancy · Transformer Architecture ·
Medical Image Segmentation.

1 Introduction

Recent studies [6, 5, 12] have integrated Transformers with U-shaped architec-
tures to improve segmentation accuracy and maintain topological continuity in
medical images by leveraging long-range dependency modeling.

However, empirical studies have demonstrated that neural networks often suf-
fer from over-parameterization, with a substantial number of weights that con-
tribute minimally to the final output. This observation has spurred widespread
research into model lightweighting. In vision tasks, MetaFormer [19] replaced
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the attention mechanism in the Transformer architecture with the pooling oper-
ation, achieving comparable performance and suggesting that the effectiveness
of the Transformer is primarily driven by its structural design rather than the
attention mechanism. While metaUNETR [13] prunes deeper encoder blocks to
reduce costs without sacrificing segmentation performance. Similarly, Zhong et
al. [20] proposed PMFSNet, which simplifies the UNet architecture by incor-
porating PMFS blocks to balance global and local feature processing, thereby
reducing the computational complexity of self-attention mechanisms. In a paral-
lel effort, 3D UX-Net [12] employs large-kernel volumetric convolution within the
Transformer framework to capture multiscale contextual information, achieving
competitive segmentation performance with enhanced efficiency. As the same
Transformer architecture is used in large language models (LLMs), a parallel
challenge has emerged in optimizing efficiency for LLMs. Gromov et al. [4] pro-
posed a hierarchical pruning strategy for pretrained large language models, of-
fering new insights into network structure optimization. He et al. [8] found that
despite the critical role of attention layers in Transformers, many layers exhibit
high similarity and can be pruned without degrading performance. Additionally,
Bobby et al. [7] demonstrated that removing Layer Normalization (LN) accel-
erates model convergence and improves quantization outcomes. Although these
two domains employ different embedding strategies. Both findings highlight that
the existing Transformer architecture exhibits unnecessary computational ineffi-
ciencies. To address model redundancy and enhance efficiency, researchers have
proposed various methods, including pruning [10], distillation [18], and quanti-
zation [16]. Among these, pruning is of particular interest, as a well-designed
pruning strategy can take advantage of the inherent sparsity supported by mod-
ern accelerators to enhance memory utilization and computational efficiency.

Current lightweight approaches primarily focus on block-level design, leverag-
ing different variants of self-attention (token mixer) or redundant feature elim-
ination. This strategy may inadvertently discard some essential features and
overlook the intrinsic advantages of the Transformer architecture [3]. In this
case, our research questions are as follows: Compared to large language models
(LLMs) with deep architectures (e.g., 32 layers), does a smaller Transformer-
based backbone (e.g., a 12-layer ViT) for vision segmentation tasks exhibit a
similar redundancy profile? How can redundancy be accurately identified at a
finer, layer-level scale and effectively pruned while preserving model efficiency
and performance?

To address these challenges, we employ a validation method based on feature
map similarity, leveraging both Angular Distance and Centered Kernel Align-
ment (CKA) to jointly verify and locate redundant layers. Furthermore, we shift
the focus of network optimization toward pruning and refining the Transformer’s
internal structure, proposing a lightweight architecture SlimFormer-3D. This de-
sign implements differentiated architectural modifications for specific layers, en-
abling layer-level pruning while preserving overall model performance. Our main
contributions are summarized as follows: 1)Our findings reveal that redundant
computations exist at a fine-grained (layer) level within individual blocks, even
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in a small Transformer. Notably, the second layer within a Transformer block
exhibits significantly higher redundancy than the first. 2) Based on our findings,
we propose SlimFormer-3D, a novel lightweight framework for 3D segmenta-
tion that optimizes the Transformer architecture to enhance resource efficiency.
3) Our model achieves competitive performance across different datasets, using
only 34% of the parameters required by state-of-the-art methods.
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Fig. 1: (a) The overall network architecture of SlimFormer-3D. We use three en-
coder stages as our backbone. B1 B2 and B3 represent three coding blocks from
shallow to deep, respectively. (b) Illustration of three variants of the SlimFormer
layer. Specifically, b1 denotes the SlimFormer layer with the first LayerNormal-
ization and token mixer pruned, b2 denotes the layer with the second Layer-
Normalization and MLP pruned, and b3 corresponds by pruning both sets of
components.

2 Method

2.1 Architecture Overview

We propose a lightweight encoder-decoder architecture. As shown in Fig. 1,
the encoder stage comprises three encoder blocks built upon the SlimFormer de-
sign. By flexibly selecting among various SlimFormer variants, we systematically
eliminate redundant components at the layer level and contribute to an overall
lightweight design.
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Given a CT image X ∈ RH×W×D×C with resolution H, W, D, and C chan-
nels. The input image is partitioned into a sequence of 3D tokens with a patch
size of 2 and projected into an embedding dimension of 48 via the Patch Em-
bedding Layer.

In the encoder stage (i = 1, 2, 3), each encoder employs two Slim Former
layers to process the input embedding features. This module is designed to reduce
computational redundancy while preserving critical local and global semantic
relationships. Patch merging operations between blocks downsample the feature
maps by half while doubling the channel count.

Residual skip connections between the encoder and decoder help preserve
information during upsampling, which is performed via transposed convolution
followed by a 1× 1× 1 convolution to generate the final segmentation.

2.2 Slim Former: Layer-Adaptive Redundancy Reduction

To reduce redundant computations and more effectively exploit the diverse com-
ponents within the Transformer architecture, the proposed SlimFormer incorpo-
rates two variants: TokenMixer Drop and MLP Drop, is illustrated in Fig. 1(b1)
and Fig. 1(b2), respectively. The processing of each layer is determined by the
gating factors α1 and α2 introduced to control the activation of the token mixer
and MLP modules. Specifically, the output of the j th layer of the i th block is
given by:

Yi,j =

{
α1 · TokenMixer (LN1(Xi,j)) +Xi,j , if α1 = 1, α2 = 0

α2 ·MLP(LN2(Xi,j)) +Xi,j , if α1 = 0, α2 = 1
(1)

where Xi,j , Yi,j represent the input and output of the j th layer of the i th block,
respectively. The token mixer module can be replaced with various token mixer
architectures, such as Mamba [21] or Attention, and is coupled with a residual
connection. LN is applied to stabilize training and ensure consistent scaling of
activations across layers.

The gating factor α1 and α2 is introduced to flexible control over the pro-
cessing route: when α1 = 1 and α2 = 0, SlimFormer employs the TokenMixer
Drop variant, where the input is processed solely by LN and the token mixer.
Conversely, when α1 = 0 and α2 = 1, the MLP Drop variant is activated, and
the input is processed only by LN and the MLP. When both α1 and α2 are set
to zero, the layer is effectively pruned as shown in Fig 1(b3), resulting in no
computation. In the case where both α1 = 1 and α2 = 1 in all block(Fig. 1),
SlimFormer defaults to the vanilla Transformer architecture, processing the in-
put through both the token mixer and the MLP as in standard practice. This
layer-adaptive approach removes redundant computations while maintaining the
model’s ability to capture complex data relationships in Sec. 3.2.

2.3 Feature Similarity Analysis for Redundancy Localization

We evaluate each layer’s contribution by measuring the similarity between its
input and output feature maps using Cosine Similarity and Centered Ker-
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nel Alignment (CKA). High similarity indicates that a layer makes little
change—suggesting redundancy—while low similarity implies significant trans-
formation and importance.

We primarily quantify feature similarity with an Angular Distance-based
metric [17, 15]:

D(Xi,j , Yi,j) = 1− 1

π
arccos

(
xi,j · yi,j

∥xi,j∥∥yi,j∥

)
(2)

where || · || denotes the L2-norm and the factor, 1
π serves as a normalization

constant. A lower value of D indicates a lower similarity between the two feature
maps, suggesting that the module is high importance and should be preserved;
conversely, a higher D implies high similarity, indicating potential redundancy
that may be pruned.

To ensure robust detection, we further introduce a CKA-based method [2] to
compute the similarity between features:

CKA(Xi,j , Yi,j) =
∥X⊤

i,jYi,j∥2F
∥X⊤

i,jXi,j∥F · ∥Y ⊤
i,jYi,j∥F

(3)

where X⊤
i,jYi,j represents the inner product between the input and output feature

matrices, while ∥∥F denotes the Frobenius norm. CKA measures directional
similarity by quantifying the correlation between X⊤

i,jYi,j . A high CKA value
implies high similarity (redundancy), while a low value indicates that the layer
significantly transforms its input and should be preserved.

3 Experiments

3.1 Dataset and implementation details

In these experiments, we employ three publicly available 3D abdominal CT
datasets with increasing data scales: BTCV [11], AMOS [9] and AbdomenCT-
1K [14]. The datasets are strictly divided into training and validation sets fol-
lowing the default splitting ratios.

We implemented SlimFormer-3D using the PyTorch and MONAI frame-
works, and all experiments were executed on four RTX 3090 GPUs. The AdamW
optimizer was used to train the model for 16K iterations with a learning rate
1e-5 and a weight decay of 1e-4. The input images were cropped to a size of
96×96×96. The widely used medical image segmentation metric, DICE [1] was
employed for evaluation.

We employed two different token mixer backbones with four encoder blocks
to precisely identify the locations of redundant computations in Sec. 3.2. Given
Mamba’s lower parameter count, reduced computational complexity, and highly
competitive segmentation performance (Sec. 3.3), we selected Mamba as the to-
ken mixer backbone with three encoder blocks. Based on the redundancy anal-
ysis at the layer-level in Sec. 3.2, the first layer of each block utilizes a vanilla
Transformer layer, while the second layer integrates the MLP Drop version of
SlimFormer.
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Fig. 2: Feature Similarity of block-level and layer-level: The first row shows the
results of Angular similarity, and the second row presents the results of CKA
similarity.

3.2 The layer level redundency computation in framework

In Fig. 2, SLM or SLT indicates the similarity between the inputs before LN
and the outputs of the token mixer or MLP, respectively. SM and ST repre-
sent the similarity between the inputs and the outputs of the token mixer and
MLP, respectively. The Angular Distance similarity (Fig. 2-a1) of the translation-
invariant feature representations derived from blocks with the two token mixers
(Attention and Mamba) varies by only 5%, alongside their competitive per-
formance in Table. 2 (Backbone: Attention vs. Mamba). This suggests that the
Transformer architecture contributes more to performance than the token mixer.

Block-level redundancy analysis (Fig. 2-a1, a2)shows that representations
before and after the bottleneck with convolution undergo a dramatic transition
with low similarity, the encoder blocks generally exhibit high feature similar-
ity, indicating the presence of redundant computations. Although the first block
shows relatively low CKA similarity due to its translation variance the subse-
quent deeper blocks align with the Angular Distance similarity results, indicating
that pruning deeper blocks would be a viable optimization strategy.

At the layer-level(second column in Fig. 2), we compare the features of
two modules in each encoder block: one comprising a LN followed by a token
mixer (LN1–Token Mixer) and the other comprising a LN followed by a MLP
(LN2–MLP) . The results reveal that feature similarity between adjacent layers
within the same block follows a pronounced sawtooth pattern (Fig. 2-b1, b2),
where the second layer in each block exhibits significantly higher redundancy
than the first. This finding indicates that redundant computations are not only
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confined to deeper blocks but also occur within the individual layers of each
block. Furthermore, the experimental results in (Fig. 2-c1, c2) demonstrate that
the sawtooth pattern persists even after eliminating the influence of LN, confirm-
ing that redundancy predominantly exists in the deeper layers within individual
blocks.

Table 1: Ablation studies: results of pruning different positions of the Backbone
with various strategies

Pruning Strategy Block
Position

Layer
Position

Parameters
(M)

FLOPs
(G) Dice

Backbone(Attention) × × 81.77 198.93 0.835
Backbone(Mamba) × × 71.50 166.18 0.832

LN2+MLP
and LN1+TokenMixer 4 2 69.06 165.66 0.823

LN2+MLP
and LN1+TokenMixer 4 1,2 17.80 156.97 0.833

LN2+MLP 1,2,3,4 2 69.93 158.48 0.828
LN1+TokenMixer 1,2,3,4 2 69.80 165.89 0.831

LN2+MLP 1,2,3 2 17.47 149.78 0.826
LN1+TokenMixer 1,2,3 2 17.36 156.69 0.828

Based on the redundant computation locations revealed by the feature simi-
larity comparisons in Figure. 2, we designed ablation experiments to test various
pruning strategies.

First, by replacing the token mixer in the four encoder block backbone as
shown in The first part (row 1,2) of Table. 1. We observed that the segmentation
Dice score differed only marginally 0.003 DICE, confirming that the Transformer
architecture, rather than the token mixer, is the decisive component of the model.

To further validate the presence of deep redundancy at the block level across
the entire backbone, we pruned the second layer of the block 4 and an entire block
as shown in The second part (row 3 and 4) part of Table. 1. The results revealed a
significant reduction in the number of parameters, while the Dice value remained
nearly unchanged or even increased by 0.001. This provides strong evidence that
redundant computations exist in the deeper encoder blocks, consistent with the
feature similarity analysis in Figure. 2.

To further investigate the redundancy within each transformer layer at the
layer level—and based on the observation of higher redundancy in the deeper
layers of each encoder block—we pruned the token mixer or MLP modules in the
second layer of each of the four encoder blocks as shown in The third part (row
5 and 6) of Table. 1. The experimental results indicate that the model perfor-
mance did not deteriorate after pruning. Subsequently, in a three-encoder-block
architecture, we pruned the token mixer or MLP in the second layer of each
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block(as shown in row 7 and 8 of Table. 1). With this setting, the number of
parameters and the floating point operations were significantly reduced, while
the model performance remained virtually unaffected. These results comprehen-
sively demonstrate the existence of redundancy both across encoder blocks and
within their deeper layers, thereby supporting the design of the SlimFormer-3D
framework.

Table 2: Quantitative comparisons with multi-organ segmentation among
SlimFormer-3D. We mark the best results with bold.

Models UNETR [6] SwinUNETR [5] 3D UX-NET [12] SlimFormer-3D

Dice
BTCV 0.791 0.806 0.810 0.826
AMOS 0.794 0.887 0.881 0.902

abdomenCT-1K 0.925 0.940 0.938 0.940
FLOPs(G) 528.64 331.56 227.51 149.78

Parameters(M) 101.79 69.94 50.74 17.47

3.3 Comparison with state of the art methods on three datasets

We compared our method with state-of-the-art segmentation models—across
three datasets (Table 1). Our results show that our method achieves compa-
rable performance on AbdomenCT-1K (0.940) while significantly boosts per-
formance on BTCV(0.825) and AMOS (0.902), demonstrating its effectiveness.
Importantly, SlimFormer-3D achieves a favorable balance between accuracy and
efficiency, with low parameter and computation costs.

4 Conclusion

In this study, we introduced SlimFormer-3D, a lightweight framework that re-
duces computational inefficiencies in Transformer-based medical image segmen-
tation. Using Angular Distance and CKA to measure feature similarity, we iden-
tify and prune redundant computations—especially in the second layers of en-
coder blocks. This layer-adaptive pruning reduces model complexity and com-
putational load by up to 3.5× compared to conventional methods like UNETR
while preserving or enhancing segmentation accuracy. Ablation studies confirm
that essential information is maintained despite systematic pruning. Our future
work will focus on developing more objective similarity measurement metrics
for redundancy detection, exploring its underlying causes, and extending our
approach to other modalities.
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