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Abstract. Limited perspectives and complex tissue deformations pose
significant challenges in accurately reconstructing monocular dynamic
surgical scene. Many existing methods fail to fully exploit inter-frame
relationships, resulting in suboptimal performance in processing complex
tissue deformations and synthesizing novel views. To address these chal-
lenges, we propose Endo-GSMT, an accurate and high-quality method
for dynamic endoscopic reconstruction from monocular surgical videos.
Our method begins by comprehensively extracting both intra-frame in-
formation and inter-frame relationships from the raw monocular videos.
We incorporate monocular depth priors and dense displacement field
priors to generate the pixel-wise 3D trajectories during the training
phase. Then, we design a set of compact and low-dimensional Sim(3)
motion bases, with each point’s motion represented as a weighted com-
bination of these motion bases. Furthermore, we develop a novel depth
loss function to address the scale inconsistency inherent in monocu-
lar depth priors. We evaluate our method using two distinct evalua-
tion strategies, the experimental results demonstrate that our method
achieves state-of-the-art reconstruction quality. The code is available at
https://github.com/M11pha/Endo-GSMT.

Keywords: 3D Gaussian Splatting · Monocular Dynamic Novel View
Synthesis · Surgical Scene Reconstruction

1 Introduction

Dynamic 3D reconstruction of deformable surgical scenes from endoscopic videos
plays a critical role in modern medical procedures [7,16,14]. High-quality visual
⋆ Co-first authors.
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reconstruction significantly facilitates downstream clinical applications, includ-
ing robotic-assisted minimally invasive surgery and augmented reality surgical
navigation [25], by providing surgeons with enhanced spatial understanding of
tissue structures. This understanding not only improves the effectiveness of surgi-
cal procedures, but also improves the quality of medical training [12,9]. However,
achieving this task is challenging due to limitations such as limited camera per-
spectives, occlusions caused by surgical instruments, and the inherent difficulty
in accurately modeling non-rigid tissue deformations.

Traditional 3D reconstruction methods typically rely on complex, multi-
step workflows [13]. Some studies [20,25,22] leverage Neural Radiance Field
(NeRF) [11] to optimize the process and improve the quality of the reconstruc-
tion. Despite their innovation, these methods face slow training and rendering
speed, while their implicit representations constrain applicability in subsequent
tasks.

3D Gaussian Splatting (3D-GS) [5] combines the flexibility of implicit rep-
resentations with the structure of explicit methods, enabling high-speed, high-
quality rendering through its parallelizable pipeline. Recent works [26,10,4,24]
leverage 3D-GS to overcome the limitations of NeRF-based methods, employing
3D Gaussian representations in a canonical space and integrating deformation
fields to model deformable surgical scenes. EndoGS [26] utilizes Structure-from-
Motion (SfM) [13] to initialize 3D Gaussian point cloud. However, the reliance
on multi-view consistency of SfM often leads to suboptimal initialization, which
prolongs training times and hampers accurate model fitting. To address this
shortcomings, several studies [10,4,24] introduce depth priors to back-project
the first-frame endoscopic capture into 3D space to initialize the 3D Gaussians.
Besides, EndoGaussian [10] and Endo-4DGS [4] leverage HexPlane [1,21] to con-
struct the deformation fields, while Deform3DGS [24] explicitly models the de-
formation of 3D Gaussians as linear combinations of Gaussian functions. These
methods markedly reduce training times and increase rendering speeds while
enhancing reconstruction quality. However, they rely solely on single-frame in-
formation with depth supervision and do not fully exploit the inter-frame rela-
tionships. Additionally, depth priors based on single-frame images suffer from
inter-frame scale inconsistency. These limitations hinder existing methods from
learning accurate time-varying deformation fields and capturing long-range 3D
motion trajectories in videos. We argue that incorporating inter-frame relation-
ships and maintaining depth stability could substantially enhance the training
of accurate deformation fields, thereby providing more diverse and accurate in-
formation and enabling more effective interaction with the surgical scene.

In this paper, we present Endo-GSMT, a highly accurate and high-quality
framework designed for reconstructing deformable surgical scenes. We model the
dynamic scene using a set of canonical 3D Gaussians, integrating depth priors
and dense displacement field priors to guide the reconstruction process and track
pixel-wise trajectories. The motion of the scene is represented by a set of compact
and low-dimensional Sim(3) motion bases. Moreover, we propose a novel depth
loss function to address the scale inconsistency between depth priors. We evaluate
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Fig. 1. The overview of our proposed Endo-GSMT pipeline. The framework comprises
four sequential components: (a) Inputs, (b) Dynamic Scene Representation (c) Trajec-
tory Tracking, and (d) Rasterization and Optimization.

our method on the EndoNeRF [20] and StereoMIS [3] datasets, the experimental
results demonstrate that Endo-GSMT achieve state-of-the-art performance.

2 Method

Pipeline. As shown in Fig. 1, we first introduce depth priors and dense dis-
placement field priors as auxiliary inputs (Sec. 2.1). We represent a dynamic
scene using 3D Gaussians. To capture the scene motion, we use the two comple-
mentary priors to generate a set of compact and low-dimensional Sim(3) motion
bases, and model each 3D Gaussian’s motion by a weighted combination of these
bases (Sec. 2.2). Additionally, we design a novel depth loss function to resolve
the scale inconsistency between depth priors (Sec. 2.3). Finally, we optimize the
framework by comparing the rendered results (Sec. 2.4).

2.1 Preliminaries: 3D Gaussian and Introduction of Priors

Gaussians in the canonical space. We model a dynamic surgical scene us-
ing global 3D Gaussians in a canonical frame. Each 3D Gaussian is defined by
parameters g ≡ (µ, r, s, o, c), where µ ∈ R3, r ∈ R4 and s ∈ R3 are the 3D mean,
orientation and scale in the canonical frame, and o ∈ R the opacity, c ∈ R3 the
color, are consistent across all time steps.
Introducing complementary priors. We use depth priors {Dt ∈ RH×W×T }
[23] and dense displacement field priors [2] {Fti→tj ∈ RH×W×2|i, j ∈ {1, . . . , T}}
to generate 3D optical flow. We first use depth priors to lift the 2D image pixels
into 3D space. Then, we apply dense displacement fields to link 3D points across
different frames, producing noisy initial 3D trajectories {X(t) ∈ RH×W×3}Tt=1.
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2.2 Dynamic Scene Representation for Deformable Tissues

Dynamic Scene Representation. To reconstruct a dynamic surgical scene,
we define a set of 3D Gaussians {G} in the canonical frame, and control their
positions, orientations and scales over time. Inspired by [19], the 3D Gaussians

at any time step t is computed based on {G} via Tc→t =

[
Rc→t tc→t

0 s−1
c→t

]
∈ Sim(3):

µt = sc→t(Rc→tµc + tc→t), Rt = Rc→tRc, st = sc→tsc, (1)

we choose the frame with the most visible 3D trajectories as the canonical frame
Ic and randomly sample N 3D trajectories from Ic to initialize 3D Gaussians.

Modeling each Gaussian’s 3D motion trajectory independently would be com-
putationally expensive. Instead, we use the initial 3D trajectories {X(t)} to de-
rive a set of globally shared, learnable basis trajectories {T(b)

0→t}Bb=1. The trans-
formation Tc→t for each Gaussian at any time step t is computed as a weighted
combination of these basis trajectories. Specifically, we conduct vectorized ve-
locity analysis on the noisy trajectories {X(t)} and apply K-means clustering to
group them into B trajectory sets {X(t)}Bb=1. For the trajectory set {X(t)}b in
the b-th cluster, we align the canonical frame point set {X(c)}b with {X(τ)}b
for all time steps τ = 0, . . . , T using weighted Procrustes alignment, thereby
obtaining the initial basis transformations T(b)

c→τ . Subsequently, we initialize the
weights w(b) for each Gaussian by applying an exponential decay based on the
distance to the cluster center. At each time step t, we compute the transforma-
tion Tc→t by weighting and combining the global basis trajectory set using the
per-cluster motion coefficients w(b):

Tc→t =

B∑
b=0

w(b)T
(b)
c→t. (2)

Rasterizing 3D Trajectories. Based on this representation, we now describe
how to track pixel-wise 3D motion trajectories at query time t with target time
t′. We use {G} to establish a dense displacement field between the two time
steps [18]. Specifically, given a pixel p at time t, we perform rasterization via
α-blending [5] to compute the expected 3D world coordinates of pixel p at the
target time t′:

X̂t→t′(p) =
∑

i∈H(p)

Tiαiµi,t′ , (3)

where H(p) is the set of Gaussians that intersect the pixel p at query time t.
Then, we project the 3D position into the 2D plane and compute the depth

of pixel p at time t′. The 2D position Ût→t′ and depth D̂t→t′(p) are given by:

Ût→t′ = Π
(
Kt′Et′X̂t→t′(p)

)
, D̂t→t′(p) =

(
Et′X̂t→t′(p)

)
[3]

, (4)
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where Kt′ and Et′ denote the camera’s intrinsic and extrinsic parameters at
time t′. The function Π represents the perspective projection operation, and
(·)[3] extracts the depth (third element) of the transformed 3D vector. This
approach enables accurate tracking of both the 2D position and depth of pixels
across frames.

2.3 Ordinal Depth Loss

Image-based monocular depth priors often provide detailed information but lack
consistency between frames, which can lead to flickering in consecutive frames.
A potential solution is to use video-based monocular depth estimation methods,
which effectively address inter-frame scale consistency but tend to be compu-
tationally intensive. Drawing inspiration from Liu et al. [8], we note that while
the depth values themselves may be inconsistent, the relative order of these val-
ues across different pixels remains stable over time. This observation lead us to
propose an order-based depth loss function:

Lordinal =
∥∥∥min

(
0, sign

(
D̂t(p1)− D̂t(p2)

)
× sign

(
Dt(p1)− (Dt(p2)

))∥∥∥ , (5)

where sign is the symbolic function, Dt represents the predicted depth values,
and D̂t denotes the rendered depth values. This function converts the depth
difference between D̂t(p1) and D̂t(p2) into 1 or -1 using the sign function, then
forces the order of depths in the rendered depth map D̂t matches that of the
predicted depth map Dt.

2.4 Optimization

We employ two sets of loss functions to guide the optimization of dynamic Gaus-
sians. The first set focuses on reconstruction, ensuring that the predicted pixel-
level colors and depth order align with the input for each frame. During each
training step, we render images Ît and depth maps D̂t using the training cameras
(Kt,Et). We supervise these predictions by enforcing reconstruction losses on
each individual frame:

Lrecon = ∥Î− I∥1 + λordinalLordinal−depth, (6)

where the reconstruction loss consists of a pixel-wise L1 loss for texture matching
and an ordinal depth loss Lordinal−depth weighted by λordinal, to enforce depth
consistency.

The second set of losses supervises the Gaussians’ motion across frames. Un-
der the temporal smoothness constraints, we use an L1 loss to fit the observed 3D
trajectories while optimizing the Gaussian positions µc, the motion coefficients
w(b), and the basis transformations {T(b)

c→t}Bb=1. Specifically, for a randomly sam-
pled query time t and target time t′, we render the corresponding 2D positions
and depth values for each pixel at time t′. These predictions are then supervised
using the introduced priors to reinforce accurate temporal correspondences:

Ltrack-2d =
∥∥∥Ut→t′ − Ût→t′

∥∥∥
1
, Ltrack-depth =

∥∥∥Dt→t′ − D̂t→t′

∥∥∥
1
. (7)
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3 Experiments and Results

3.1 Experiment Setting

Datasets. We evaluate the performance of our method on two stereo endo-
scopic video datasets: (1) EndoNeRF Dataset [20] contains six stereo surgical
videos, each exhibiting moderate tissue deformations. (2) StereoMIS Dataset [3]
contains eleven stereo surgical videos, featuring diverse scenes and complex tis-
sue deformations. For our evaluation, we focus on two accessible scenes from
the EndoNeRF dataset and five carefully selected segments from the StereoMIS
dataset.
Evaluation Setting. We perform experiments using two evaluation strategies:
(1) Frame Extraction Evaluation: following [25], we divide the video frames
into training and testing sets in a 7:1 ratio. (2) Novel View Synthesis (NVS)
Evaluation: we argue that the frame extraction evaluation using training views
cannot determine if the model overfits to the training views. Therefore, we use
the left view (the primary view) for training and the right view for testing,
ensuring a more comprehensive performance assessment.

Unlike previous methods that assume a fixed camera viewpoint, we enhance
the robustness of our approach by pre-estimating the camera’s intrinsic and
extrinsic parameters using Droid-SLAM [17]. Potential inaccuracies in these cal-
ibrated parameters may lead to slight spatial misalignments in the rendered
results compared to the corresponding ground truth. To address this issue, we
align the rendered outputs with the ground truth using a pretrained optical flow
network PWC-Net [15] and compute evaluation metrics on the aligned results.
Specifically, we employ the aligned Peak Signal-to-Noise Ratio (PSNR), Struc-
tural Similarity Index (SSIM), and Learned Perceptual Image Patch Similarity
(LPIPS) as evaluation metrics.
Implementation Details. We use Adam optimizer [6] for training. Specifically,
we perform preliminary fitting for the first 1,000 iterations, followed by the main
optimization for 500 epochs. We model the surgical scene as a globally dynamic
environment and set the number of Sim(3) motion bases to 60. In the canonical
space, we initialize 100,000 Gaussians and adopt the adaptive Gaussian control
strategy from 3D-GS [5]. The batch size, λordinal, λtrack-2d, and λtrack-depth are set
to 8, 0.5, 0.2, and 0.01, respectively. We implement our approach using PyTorch
and train it on a single NVIDIA RTX 4090 GPU.

3.2 Experiment Results

Comparison with State-of-the-art Methods. We evaluate our proposed
method against two NeRF-based methods [20,22] and four 3DGS-based meth-
ods [26,10,4,24] using frame extraction and NVS strategies. Comparison of NVS
is made only among 3DGS-based methods.

As listed in Table 1, our method outperforms all baseline methods in both
frame extraction and NVS evaluations. For the EndoNeRF dataset, our method
achieves modest improvements in PSNR and SSIM, and delivers a notable 24%
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Table 1. Quantitative evaluation of our proposed framework against existing two
NeRF-based methods and four 3DGS-based methods. The best results are in bold.

Dataset Method Frame Extraction Eva. NVS Eva.
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

EndoNeRF [20]

EndoNeRF [20] 28.355 0.918 0.090 - - -
LerPlane-32k [22] 38.238 0.948 0.055 - - -

EndoGS [26] 35.616 0.952 0.059 24.566 0.882 0.115
EndoGaussian [10] 35.522 0.957 0.103 27.949 0.905 0.096

Endo-4DGS [4] 36.945 0.957 0.037 28.318 0.909 0.092
Deform3DGS [24] 38.259 0.960 0.062 30.469 0.921 0.083

Endo-GSMT (Ours) 38.783 0.968 0.028 30.735 0.928 0.063

StereoMIS [3]

EndoNeRF [20] 31.922 0.857 0.146 - - -
LerPlane-32k [22] 31.679 0.845 0.113 - - -

EndoGS [26] 32.819 0.907 0.099 20.714 0.755 0.200
EndoGaussian [10] 29.191 0.827 0.181 23.098 0.721 0.227

Endo-4DGS [4] 31.580 0.862 0.124 27.461 0.802 0.156
Deform3DGS [24] 32.209 0.863 0.124 22.131 0.702 0.214

Endo-GSMT (Ours) 34.703 0.917 0.060 29.699 0.863 0.091

Table 2. Ablation study of different motion rep-
resentations and depth losses. The best results are
in bold.

Method PSNR↑ SSIM↑ LPIPS↓
Per-Gaussian motion + L1 depth loss 37.014 0.926 0.039
Per-Gaussian motion + ordinal loss 37.620 0.934 0.035
Sim(3) motion base + L1 depth loss 38.202 0.956 0.031

Sim(3) motion base + ordinal loss 38.783 0.968 0.028

Table 3. Quantitative comparison
with different numbers of Sim(3) mo-
tion base.

Number of Motion base PSNR↑ SSIM↑ LPIPS↓
10 38.106 0.965 0.032
30 39.591 0.966 0.030
60 38.783 0.968 0.028
80 38.782 0.968 0.028

improvement in LPIPS over the second-best method. For the more challenging
StereoMIS dataset, the superiority of our method is even more evident: it im-
proves PSNR by 1.9 dB and 2.2 dB, SSIM by 1% and 7%, and LPIPS by 39% and
41%, respectively, compared to the second-best method. These results demon-
strate that our method better captures non-rigid motions and texture details
in dynamic surgical scenes, improving both reconstruction fidelity and synthesis
quality.

To further demonstrate the effectiveness of our method, we provide qualita-
tive visual comparisons. Fig. 2 shows the frame extraction results, while Fig. 3
shows the novel view synthesis results. For a clearer assessment of reconstruction
quality, key areas are highlighted in green boxes. In the frame extraction compar-
isons (Fig. 2), our method accurately restores regions with complex textures and
tissue deformations, avoiding the blurred artifacts often associated with 3DGS
methods. In the more challenging novel view synthesis comparisons (Fig. 3), our
approach consistently preserves excellent texture details and geometric struc-
tures. These results further confirm the robust performance of our method in
enhancing both 3D reconstruction quality and dynamic scene representation.
Ablation Study. To validate the effectiveness of our proposed method, we
conduct ablation study on the EndoNeRF dataset using frame extraction evalu-
ation: (1) “Per-Gaussian motion”: replacing Sim(3) motion base with naive per-
Gaussian motion trajectories, and (2) “L1 depth loss”: replacing ordinal depth
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Fig. 2. Visualization of the frame extraction results.

Fig. 3. Visualization of the novel view synthesis results.

loss with L1 depth loss. As shown in Table 2, any other combination leads to
suboptimal results, thereby confirming the effectiveness of our designed Sim(3)
motion base and ordinal depth loss. Furthermore, we quantitatively assess the
effect of the number of Sim(3) motion bases on scene representation capability.
Table 3 shows that as the number of Sim(3) motion bases increases, the scene
representation capability improves, reaching a peak at a certain point. This sug-
gests that a higher number of motion bases allows more accurate capture of
non-rigid motion as well as texture details, reaching a capacity limit at a certain
point, thereby enhancing both reconstruction accuracy and synthesis quality.

4 Conclusion

We present Endo-GSMT, a novel 3DGS-based framework for dynamic endoscopic
reconstruction from monocular surgical videos. Our method fully utilizes both
intra-frame information and inter-frame relationships by incorporating depth
priors and dense displacement field priors, and employs canonical 3D Gaussians
with their parameters controlled by a set of compact Sim(3) motion bases to
accurately model the dynamic surgical scene with high quality. Additionally, we
develop a novel depth loss function to address the scale inconsistency inherent in
monocular depth priors. Extensive evaluations on two datasets demonstrate that
our method significantly improves dynamic reconstruction of surgical scenes.
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