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Abstract. Dynamic functional connectivity (dFC) derived from fMRI captures 

the temporal dynamics of brain networks, where cross-frequency features pro-

vide complementary characterizations for brain disorder classification. Although 

existing multi-band approaches incorporate sub-band decomposition, they pri-

marily rely on simplistic averaging or fixed-weight strategies, failing to adap-

tively fuse information across multiple frequency bands. To handle this limita-

tion, we propose a dual-stream multi-band fusion network (DSMFN): 1) The fre-

quency-domain stream employs a sub-band graph encoding-interaction module, 

where local graph convolution networks (GCNs) extract band-specific topologi-

cal features, and lightweight convolutions replace computationally intensive at-

tention mechanisms for data-driven band contribution allocation, followed by a 

global GCN to aggregate cross-band information; 2) The time-domain stream 

preserves local dynamic properties via residual multi-layer perceptron networks; 

3) A feature-temporal dual-dimension cross-attention mechanism jointly models 

temporal evolution and cross-domain complementarity to adaptively integrate 

multi-band features with time-varying characteristics. Experiments on two dis-

tinct brain disease datasets demonstrate the effectiveness of DSMFN, achieving 

accuracies of 91.40% for MCI and 70.18% for ASD classification. This study 

provides an efficient fusion framework for multi-band dynamic brain network 

analysis, advancing precise diagnosis of brain disorders. Our code is available at 

https://github.com/WuLingBNU/DSMFN. 
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1 Introduction 

Functional connectivity (FC) derived from fMRI reflect functional interactions between 

distinct brain regions [1]. While static functional connectivity (sFC) captures steady-

state features through full-time averaging, it may overlook temporal variations [2]. Dy-

namic functional connectivity (dFC) characterizes temporal evolution of connectivity 

patterns, not only enhancing sensitivity to abnormal neural coordination in pathological 
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states through temporal dynamics [3] but also uncovering richer features in the fre-

quency domain. Accordingly, this dynamic feature modeling makes dFC particularly 

valuable for brain disease classification and diagnostic applications [4]. 

Recent advances in frequency-domain analysis of fMRI have opened new perspec-

tive for brain disorder classification [5]. Studies indicate that spontaneous fluctuations 

in resting-state BOLD signals predominantly reside within the 0.01-0.08Hz low-fre-

quency range [6], yet this band may contain multiple cognitive function-related sub-

bands, such as Slow-4 (0.027-0.073 Hz) and Slow-5 (0.01-0.027 Hz) [7]. Yaesoubi et 

al. [8] demonstrated that visual network activity predominantly resides in the relatively 

lower frequency band (0.003–0.037 Hz), while the default mode network shows signif-

icant activation in the higher frequency band (0.075–0.113 Hz), with cross-frequency 

interactions between them. This suggests that it is important to further decompose 

broad-band signals to capture sub-band-specific information. 

Wavelet transform, owing to its time-frequency localization capability, is particu-

larly suited for non-stationary BOLD signals [9] and has become a mainstream ap-

proach for multiple frequency bands (abbreviated as multi-band) functional connectiv-

ity analysis [10]. For instance, Ding et al. [11] proposed a frequency-adaptive model to 

dynamically construct functional connectivity by comparing cross-band correlations 

between brain regions. Hu et al. [12] generated sparse networks through averaging of 

multi-band connectivity matrices, validating the biological relevance of band fusion. 

Ding et al. [13] designed independent kernel functions for each band and achieved clas-

sification via linear kernel combination. However, existing methods still struggle to 

fully exploit band-specific information and lack dynamic fusion mechanisms tailored 

to downstream tasks.  

Brain networks can be represented as graph structures with nodes denoting brain 

regions and edges representing FC, thereby forming functional connectivity networks 

(FCNs). Conventional approaches often use handcrafted network metrics (e.g., cluster-

ing coefficient) [4], which may introduce selection bias due to prior assumptions. Graph 

Neural Networks (GNNs) overcome this by learning topological representations 

through iterative neighborhood aggregation [14]. The multi-band functional graphs 

from BOLD signals align with GNNs' ability to model non-Euclidean data, enabling 

data-driven discovery of connectivity patterns. Therefore, we propose a sub-band graph 

encoding-interaction (SGEI) module: independent GCN branches first extract topolog-

ical features from spectrally decomposed sub-bands; lightweight convolutions then per-

form data-driven weight allocation; finally, a global GCN enables global optimization 

and integration of cross-band information. To integrate time and frequency domains, 

we design a feature-temporal dual-dimension cross-attention (FTDC) mechanism: at-

tention weights are independently computed along feature (e.g., different streams) and 

temporal (e.g., sliding window evolution) dimensions; matrix multiplication combines 

these weights to generate joint attention maps for feature fusion. We propose a Dual-

stream Multi-band Fusion Network (DSMFN), and our main contributions are summa-

rized as follows: 

— We design a dual-stream framework that adaptively fuses multi-band connec-

tivity features with time-varying characteristics through attention mechanisms 

jointly modeling temporal evolution and cross-domain feature interactions. 
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— We develop a sub-band graph encoding-interaction module that enables both 

the extraction of band-specific features and adaptive dynamic integration of 

cross-band information. 

— Experimental results demonstrate that our method outperforms existing meth-

ods in brain disease diagnosis tasks (such as MCI and ASD classification). 

 

Fig. 1. (a) The overall architecture of DSMFN, (b) The sub-band graph encoding-interaction 

(SGEI) module, (c) The feature-temporal dual-dimension cross-attention (FTDC) module. 

2 Method 

We propose a dual-stream dynamic analysis framework for FCNs, termed DSMFN 

(Dual-stream Multi-band Fusion Network), as illustrated in Fig. 1. Given that brain 

activity patterns contain both frequency-specific oscillatory features and time-varying 

dynamic characteristics, we design this dual-stream architecture to separately model 

and synergistically integrate time-frequency information, achieving cross-domain com-

plementary characterization of neural dynamics. The framework is composed of three 

key components: 1) frequency-domain feature extraction module, 2) time-domain fea-

ture extraction module, and 3) feature fusion and classification module. Given a sub-

ject's original BOLD signal 𝑋𝑟𝑎𝑤 ∈ ℝ𝑁×𝑇 , where 𝑁 denotes the number of regions of 

interest (ROIs) and 𝑇 represents the number of time points. The entire BOLD signal 

is divided into a series of overlapping time windows 𝑋 = {𝑋1, 𝑋2, ⋯ , 𝑋𝑤}, 𝑋𝑖 ∈ ℝ𝑁×𝑙 
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using a sliding window of appropriate size, where 𝑤 represents the number of win-

dows and 𝑙 represents the length of the window. Our objective is to develop a com-

prehensive representation that can effectively capture the temporal dynamics and fre-

quency specificity, thereby enabling a more accurate distinction between patients and 

healthy controls. The following sections will provide a detailed explanation of the spe-

cific components of each module. 

2.1 Frequency-domain Feature Extraction 

To align with the discrete structure from the division of time windows, we apply Dis-

crete Wavelet Transform (DWT) [15] to decompose BOLD signals 𝑋𝑖  within each 

time window into various frequency sub-bands. In practical applications, the DWT is 

commonly implemented using a filter bank, where each decomposition separates the 

signal into low- and high-frequency components. The low-frequency components un-

dergo iterative decomposition until a specified resolution threshold is met [7]. 

Next, we calculate the Pearson correlation coefficient between each pair of brain 

regional BOLD signals, yielding a set of functional connectivity matrices 

{𝐴𝐿,1, ⋯ , 𝐴𝐿,𝑤 , 𝐴𝐻,1, ⋯ , 𝐴𝐻,𝑤}. We adopt single-level decomposition, and these matri-

ces capture the interaction patterns of brain regions at different frequency scales, where 

𝐿 and 𝐻 denote the low-frequency and high-frequency sub-bands. 

Then, we introduce a sub-band graph encoding-interaction (SGEI) module to extract 

and hierarchically fuse multi-band features. For the i-th time window and j-th frequency 

band, we first encode its functional connectivity matrix 𝐴𝑗,𝑖 to capture the matrix's 

features: 

𝑥𝑗,𝑖 = 𝜑𝑀𝐿𝑃(𝐴𝑗,𝑖) (1) 

We apply independent graph convolutional branch to learn topological features for each 

frequency band, where adjacency matrices undergo symmetric normalization and node 

representations are iteratively updated layer-wise. We then integrate multi-band local 

topological patterns via feature concatenation operations. 

𝐴̂𝑗,𝑖 = 𝐷−
1
2𝐴𝑗,𝑖𝐷−

1
2 (2) 

ℎ𝑙+1
𝑗,𝑖

= 𝜎(𝐴̂𝑗,𝑖ℎ𝑙
𝑗,𝑖

𝑊𝑙
𝑗,𝑖

), ℎ0
𝑗,𝑖

= 𝑥𝑗,𝑖  (3) 

ℎ𝑚𝑢𝑙𝑡𝑖,𝑖 = 𝐶𝑜𝑛𝑐𝑎𝑡_𝐹𝑢𝑠𝑒(ℎ𝑙+1
1,𝑖 , ℎ𝑙+1

2,𝑖 , ⋯ , ℎ𝑙+1
𝑓,𝑖

) (4) 

Here, ℎ𝑙
𝑗,𝑖

 represents the hidden features at the l-th layer, and 𝑊𝑙
𝑗,𝑖

 is a learnable 

transformation matrix that maps node features to a new feature space. To overcome 

limitations of fixed band-weighting schemes, we use lightweight 1 × 1 convolutional 

kernels to dynamically learn the importance weights 𝛼𝑗 of each band, generating a 

cross-band adjacency matrix 𝐴𝑚𝑢𝑙𝑡𝑖,𝑖. This enables data-driven adaptive allocation of 

band-specific contributions. 
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𝐴𝑚𝑢𝑙𝑡𝑖,𝑖 = ∑ 𝛼𝑗

𝑓

𝑗=1

𝐴𝑗,𝑖  (5) 

Finally, we construct a global graph convolutional layer to capture nonlinear cross-band 

interaction patterns through multi-layer feature propagation. 

ℎ𝑙+1
𝑐𝑟𝑜𝑠𝑠,𝑖 = 𝜎(𝐴̂𝑚𝑢𝑙𝑡𝑖,𝑖ℎ𝑙

𝑐𝑟𝑜𝑠𝑠,𝑖𝑊𝑙
𝑐𝑟𝑜𝑠𝑠,𝑖), ℎ0

𝑐𝑟𝑜𝑠𝑠,𝑖 = ℎ𝑚𝑢𝑙𝑡𝑖,𝑖  (6) 

Through this dual mechanism of local band feature extraction and global cross-band 

information aggregation, the resulting feature representation ℎ𝑙+1
𝑐𝑟𝑜𝑠𝑠,𝑖 ∈ ℝ𝑤×𝐷  pre-

serves both band-specific discriminability and cross-band synergy. 

2.2 Time-domain Feature Extraction 

To effectively preserve the local dynamic properties of raw BOLD signals and com-

pensate for potential information loss during frequency-domain feature extraction, we 

design a parallel stream for time-domain feature extraction. This stream employs a re-

sidual multi-layer perceptron (MLP) network to encode and extract features, where re-

sidual connections [16] are introduced to mitigate gradient vanishing and maintain the 

integrity of original temporal patterns. And a dimensional alignment layer projects the 

temporal features into a latent space compatible with frequency-domain representa-

tions. 

2.3 Feature Fusion and Classification 

To improve the integration of dual-stream features, we design a feature-temporal dual-

dimension cross-attention (FTDC) module. This module performs adaptive fusion by 

constructing an interaction between the dual-stream and temporal features. 

Specifically, we first stack the frequency-domain and time-domain features along 

the feature dimension to form the input ℎ𝑓𝑡 ∈ ℝ2×𝑤×𝐷. Attention weights are then ex-

tracted separately from both the feature streams 𝐷𝑢𝑎𝑙𝑎𝑡𝑡𝑛 ∈ ℝ2×1×1 and the temporal 

dimension 𝑊𝑖𝑛𝑑𝑜𝑤𝑎𝑡𝑡𝑛 ∈ ℝ𝑤×1×1: 

𝐷𝑢𝑎𝑙𝑎𝑡𝑡𝑛 = 𝜎(𝑊2 (𝑅𝑒𝐿𝑈 (𝑊1 (𝐴𝐴𝑃(ℎ𝑓𝑡))))) (7) 

𝑊𝑖𝑛𝑑𝑜𝑤𝑎𝑡𝑡𝑛 = 𝜎(𝑉2 (𝑅𝑒𝐿𝑈 (𝑉1 (𝐴𝐴𝑃((ℎ𝑓𝑡)𝑇))))) (8) 

Here, AAP refers to the adaptive average pooling operation and 𝜎 represents the soft-

max activation function. Next, we combine the attention weights from both dimensions 

through matrix multiplication to weight the input features: 

ℎ = ℎ𝑓𝑡⨂(𝐷𝑢𝑎𝑙𝑎𝑡𝑡𝑛 ∙ 𝑊𝑖𝑛𝑑𝑜𝑤𝑎𝑡𝑡𝑛
𝑇 ) (9) 
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Here, ⨂ denotes element-wise multiplication. This module not only adaptively ad-

justs the importance of dual-stream features but also effectively captures the critical 

information via a window-level attention mechanism. 

The fused features are standardized using layer normalization. Then, we use a Long 

Short-Term Memory (LSTM) [17] network to model the fine-grained temporal dynam-

ics and long-range dependencies in the sequence features, with its internal gating mech-

anisms implicitly regulating the information flow. The global feature representation is 

derived from LSTM's terminal hidden state ℎ𝑤 . The final classification layer maps 

these features to the target class space 𝑦, while we use cross-entropy loss to compute 

the classification loss, and apply label smoothing to mitigate model overfitting and en-

hance generalization performance. 

𝐿𝐶𝐸 = − ∑ 𝑦𝑐𝑙𝑜𝑔(𝑝𝑐̂)

𝐶

𝑐=1

 (10) 

3 Experiments 

3.1 Dataset and Experimental Settings 

Dataset. We evaluated the proposed method on two neurological conditions: MCI and 

ASD. The rs-fMRI datasets used were from ADNI-2 (https://adni.loni.usc.edu/) and 

ABIDE-II (https://fcon_1000.projects.nitrc.org/). For ADNI-2, we selected 135 healthy 

controls and 274 MCI patients (age range: 56-95 years). For ABIDE-II, we similarly 

selected 557 healthy controls and 496 ASD patients (age range: 5-64 years). Due to 

site-specific scanning parameters, each site's dataset underwent independent prepro-

cessing. These datasets were preprocessed using the DPARSFA [18] toolbox, with 

steps including slice timing correction, realignment, co-registration of T1-weighted im-

ages to functional images, spatial normalization by using EPI templates, spatial smooth-

ing with a 6mm×6mm×6mm Gaussian kernel [19], nuisance covariates regression, 

band-pass filtering (0.01-0.08 Hz), and so on. The AAL atlas was used to extract the 

average time series from 90 brain regions in the gray matter. 

Implementation Details. The model was implemented on an NVIDIA RTX3090 GPU 

using the PyTorch 2.1.0 framework. During training, we set the batch size to 16, the 

learning rate to 0.001, used the db4 wavelet function, and the Adam optimizer. To en-

sure the reliability of the evaluation, we employed a nested 10-fold cross-validation 

strategy [20]. The evaluation metrics included accuracy (ACC), sensitivity (SEN), 

specificity (SPE), area under the curve (AUC), and F1 score (F1). 
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3.2 Performance Comparison 

To validate the effectiveness of our proposed method, we conducted comparative ex-

periments using several state-of-the-art deep learning methods on the MCI and ASD 

diagnostic tasks: 1) LSTM [17] and CNN-LSTM, 2) BrainNetCNN [21], 3) BrainGNN 

[22] and ST-GCN [23], and 4) Transformer [24] and ACI-FBN [25]. All comparison 

methods used identical datasets and a nested 10-fold cross-validation strategy to ensure 

the comparability of the experiments. 

The experimental results in Table 1 showed that our method outperformed others in 

both MCI and ASD classifications, achieving the highest accuracy of 91.40% for MCI 

and 70.18% for ASD. On the ACC metric, we performed paired samples t-tests and our 

model showed statistically significant differences (p < 0.05) when compared with each 

baseline method listed in Table 1. This demonstrated the effectiveness of our multi-

band fusion and time-frequency dual-stream complementary brain network analysis 

framework. 

Table 1. Classification results of MCI and ASD. 

Method 
MCI/NC(%) ASD/NC(%) 

ACC SEN SPE AUC F1 ACC SEN SPE AUC F1 

LSTM 71.41 63.55 40.11 73.33 62.17 62.42 61.73 60.52 61.20 60.23 

CNN-LSTM 82.52 78.37 65.30 85.98 79.18 64.22 63.53 70.80 63.58 62.78 

BrainNetCNN 74.12 67.81 49.74 73.30 66.91 53.41 51.04 48.46 54.01 42.83 

BrainGNN 84.73 82.77 76.23 91.38 82.64 65.93 64.55 78.52 63.96 63.92 

ST-GCN 83.78 79.16 65.56 79.51 79.32 65.93 65.17 71.05 63.67 64.96 

Transformer 74.39 68.60 53.45 77.14 67.95 54.11 51.10 64.97 56.89 37.70 

ACI-FBN 88.88 95.96 73.34 93.67 91.75 59.72 58.07 56.92 58.84 48.61 

DSMFN (Ours) 91.40 89.64 84.34 94.06 89.96 70.18 69.90 73.67 70.76 69.75 

3.3 Ablation Study 

Effectiveness of the Proposed Dual-Stream Architecture. We designed five sets of 

experimental comparisons: a single frequency-domain stream (without frequency band 

division), a single frequency-domain stream (with multi-frequency bands), a single 

time-domain stream, a dual-stream architecture (without frequency band division), and 

a dual-stream architecture (with multi-frequency bands). The results were shown in 

Table 2. 

It was evident that the fusion of multi-band features in the single frequency-domain 

stream did not significantly improve performance, likely due to the inevitable infor-

mation loss during wavelet decomposition. In the two diagnostic tasks, the dual-stream 

architecture did not always outperform the single time-domain stream, excluding the 

performance improvement solely due to added parameters. The best performance was 

achieved with the combination of multi-band fusion and the dual-stream architecture. 
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This demonstrated that detailed frequency-domain analysis and dual-domain comple-

mentarity enhanced functional network feature extraction across multiple dimensions 

and scales. 

Table 2. Ablation study results of the Dual-Stream architecture. 

Ablation Method 
MCI/NC(%) ASD/NC(%) 

ACC SEN SPE AUC F1 ACC SEN SPE AUC F1 

Base_Freq 70.68 64.22 47.15 71.56 63.32 65.53 64.62 69.01 64.07 64.00 

Multi_Freq 68.98 62.46 42.98 68.90 62.01 63.52 63.08 68.69 61.88 62.43 

Only_Time 89.16 87.13 80.53 91.92 87.46 65.53 65.00 76.29 65.00 64.33 

Dual_Stream 87.90 86.13 80.43 91.45 86.07 66.33 65.64 73.82 65.61 65.50 

Dual_Multi_Freq 91.40 89.64 84.34 94.06 89.96 70.18 69.90 73.67 70.76 69.75 

Effectiveness of the Frequency Band Integration Strategy. Using MCI as an exam-

ple, we compared three different frequency band integration strategies: Concat-Fusion, 

Attention-Fusion, and MGCN fusion proposed in this paper. The results were shown in 

Fig. 2 (a). Fig. 2 (b) showed that only splitting the signal into high-frequency and low-

frequency components (i.e., the number of frequency bands=2) yielded the best perfor-

mance. Over-partitioning of frequency bands may introduce unnecessary complexity. 

  
    (a)        (b) 

Fig. 2. (a) Performance of three multi-band integration strategies. (b) Experimental selection of 

optimal number of frequency bands. 

4 Conclusion 

In this study, we introduce an innovative framework for multi-band dynamic brain net-

work analysis—DSMFN. By fusing multi-band features and complementing time-fre-

quency dual-streams, this method highlights two crucial challenges in traditional re-

search: 1) the specific oscillatory patterns of the brain across different frequency bands, 

and 2) the complementary nature of the time-frequency features. Experimental results 
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on two brain disorder diagnostic datasets validate the effectiveness of our method. They 

show that DSMFN significantly enhances disease diagnosis accuracy by learning brain 

network features in a multi-dimensional and multi-scale manner. 
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