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Abstract. Unsupervised medical image synthesis faces significant chal-
lenges due to the absence of paired data, often resulting in global anatom-
ical distortions and local detail loss. Existing approaches primarily rely
on convolutional neural networks (CNNs) for local feature extraction;
however, their limited receptive fields hinder effective global anatomi-
cal modeling. Recently, Vision Mamba (ViM) has demonstrated efficient
global modeling capabilities via state-space models, yet its potential in
this task remains unexplored. To address this gap, we propose a hy-
brid architecture, CRAViM (Convolutional Residual Attention Vision
Mamba), which integrates the precise local anatomical feature extrac-
tion of CNNs with the long-range dependency modeling of state-space
models, thereby enhancing the structural fidelity and detail preserva-
tion of synthesized images. Furthermore, we introduce a cycle denoise
consistency-based training framework that incorporates transport loss
and random denoise loss to jointly optimize global structural constraints
and local detail restoration. Experimental results on two public medical
imaging datasets demonstrate that CRAViM achieves notable improve-
ments in key metrics such as SSIM and NMI over existing methods, effec-
tively maintaining global anatomical consistency while enhancing local
details, thus validating the effectiveness of our approach. The code for
this paper can be found at https://github.com/jmzhang-cv/CRAViM.

Keywords: Mamba · State Space Model · Medical Image Synthesis ·
Unsupervised Image Translation.

1 Introduction

Multimodal medical imaging significantly enhances lesion detection accuracy
through integration of heterogeneous imaging data [3], yet faces three major bot-
tlenecks: radiation accumulation, cross-modal registration errors, and exponen-
tially increasing costs [15,13]. Unsupervised medical image synthesis technology
addresses these challenges by generating multimodal images from single-scan ac-
quisitions. This approach not only eliminates radiation exposure from repeated
⋆ Corresponding author
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scans but also produces anatomically consistent multimodal data, thereby re-
moving registration-induced interference in quantitative analysis. The synthe-
sized images establish a robust data foundation for multiscale feature fusion and
pathophysiological mechanism investigation [10]. This technological advance-
ment drives the evolution of medical image analysis from superficial feature
observation to deep pathological mechanism exploration, providing novel path-
ways for developing intelligent diagnostic systems.

Existing unsupervised methods primarily rely on the local feature extraction
capability of Convolutional Neural Networks (CNNs) [22,20]. However, their lim-
ited receptive field makes it difficult to model long-range spatial dependencies,
leading to distortion of global anatomical structures in synthesized images [21,7].
While Vision Transformer (ViT) improves remote modeling through global at-
tention mechanisms [6,4], it still faces a dual challenge in unpaired medical im-
age synthesis: the lack of local inductive bias leads to loss of fine details, and
it is difficult to learn fine-grained features under unsupervised conditions [16].
While recent studies show that Mamba-based architectures demonstrate sig-
nificant advantages in medical image analysis tasks such as classification and
segmentation [1], their architectural designs are often not optimized for high-
fidelity generation. Consequently, the potential of Vision Mamba (ViM) [23] in
the distinct task of unpaired image synthesis has yet to be fully explored.

In this paper, we propose a novel hybrid network, CRAViM (Convolutional
Residual Attention Vision Mamba), which innovatively integrates state-space
models into unpaired medical image synthesis tasks. This architecture retains
the precise local feature extraction capabilities of traditional convolutional neu-
ral networks (CNNs) while leveraging state-space models to establish anatomy-
aware global dependencies, thereby enhancing the structural consistency of syn-
thesized images. Concurrently, we design a noise-consistency training frame-
work that synergistically optimizes global structural constraints and local de-
tail restoration by combining transport loss with random denoise loss, further
improving the model’s fidelity in preserving fine-grained details.

Our contributions can be summarized as follows. 1) We propose CRAViM,
a hybrid network that precisely extracts local anatomical features via convolu-
tional operations and models long-range dependencies with state-space models,
thereby enhancing the anatomical fidelity and detail restoration of synthesized
unpaired medical images. 2) We design a training framework based on noise-
consistency modeling, which effectively improves the structural consistency and
global visual quality of synthesized images. 3) We introduce transport loss as
a novel loss function constraint strategy, indirectly optimizing the quality of
synthesized images to mitigate potential conflicts among multiple loss functions,
thus enhancing the model’s stability and generalization capability. 4) We pioneer
the integration of the Mamba structure into unpaired medical image translation
tasks, offering a novel research direction for the field and advancing the devel-
opment of related tasks.
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Fig. 1. The architecture of the CRAVIM network. The 2D-ESSM component utilizes
a state-space model (SSM) for modeling, and its governing equations are illustrated in
the figure.

2 Method

2.1 CRAViM

To address the dual challenges of complex anatomical topology and modality-
specific characteristics in medical images, we propose an innovative hybrid archi-
tecture, CRAViM (Fig. 1). This architecture integrates the advantages of con-
volutional operations and state space models, effectively resolving the trade-off
dilemma between global structural preservation and local detail reconstruction
that commonly exists in traditional methods.

ConvEmbedding The convolutional embedding module uses a three-stage pro-
gressive downsampling structure (Eq. 1). To overcome the locality limitation of
conventional convolutions, we adapt the EVSS Block [14], whose 2D-Efficient Se-
lective Scan Module (2D-ESSM) establishes long-range dependencies for global
context modeling via a selective scanning mechanism.

Fl+1 = ReLU(IN(Conv(Fl))). (1)

Information Bottleneck The bottleneck layer constructs a deep feature re-
finement network by cascading residual blocks [8]. The multi-scale feature fusion
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Fig. 2. The proposed cycle denoise consistency framework. The forward (Gx) and back-
ward (Gy) paths establish the cycle. The top right shows the calculation of the random
denoise loss (Lrdn), which enhances robustness.

mechanism in this design effectively preserves anatomical features across differ-
ent spatial resolutions, such as gray matter boundaries in MRI images.

Convolutional Decoder The decoding stage adopts a collaborative design of
transpose convolutions and attention mechanisms. First, the EVSS Block inte-
grates global context information, followed by a mixed spatial-channel attention
gating mechanism:

Fout = σ(Fattention)⊙ Fcontent, (2)

where the attention weight map is normalized by the sigmoid activation function
σ(·), enhancing the focus on lesion regions.

Thus, the design of CRAViM has the following advantages: (1) the cascade
architecture of state-space models and convolutional operations effectively inte-
grates local and global features; (2) multi-level feature extraction retains com-
plete spatial structural information; (3) the jump sampling scanning strategy
fully utilizes the structural information extracted by the progressive feature fu-
sion strategy while compensating for the computational efficiency of multi-level
feature extraction.

2.2 Training Framework

To address the insufficient modeling capacity of existing unsupervised frame-
works—often resulting in anatomical structure distortion and feature confu-
sion—we propose a cycle denoise consistency framework (Fig. 2). This archi-
tecture synergistically integrates denoising modeling with cycle consistency con-
straints. The core idea is to leverage noise as a training signal to decouple and
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stabilize the optimization process, thereby alleviating the conflict between pre-
serving global structures and recovering fine-grained details.

To achieve this goal, we introduce two dedicated loss functions. First, to
preserve global anatomical structures under the unpaired setting, we design a
symmetric cross-modal transport loss (Ltrans). This loss acts as an indirect struc-
tural constraint on both generators, encouraging them to function as identity
mappings for their respective input images when conditioned on specific noise
inputs. It consists of both a forward and a backward component. Given the
forward pass outputs (x′

0, y
′
0) = Gx(x0, yT ) and the subsequent reconstruction

pass for the intermediate image (y′′′0 , x′′′
0 ) = Gy(y

′
0, xt), the total transport loss

is defined as:

Ltrans = Ex0∼pX [∥x′
0 − x0∥1 + ∥y′′′0 − y′0∥1], (3)

Second, to enhance the model’s robustness and enforce the learning of noise-
invariant anatomical representations, we propose a random denoise loss (Lrdn).
This mechanism trains the generator Gx to remove randomly added noise from
its own synthetic output y′0. This process, illustrated in the top right of Fig. 2,
forces the generator to distinguish authentic anatomical features from noise-
induced artifacts. Given the denoising outputs (x′′

0 , y
′′
0 ) = Gx(x0, y

′
t), the loss is

defined as:

Lrdn = Ex0∼pX [∥y′′0 − y′0∥1], (4)

Here, y′t is obtained by applying random intensity noise to the generated
sample y′0.

These two loss functions work in a complementary fashion: Ltrans provides a
stable anchor for global structural preservation, while Lrdn focuses on enhancing
the fidelity and robustness of local features. This hybrid optimization strategy,
combined with the standard adversarial loss (Ladv) and cycle consistency loss
(Lcyc), forms our final training objective:

min
Gx,Gy

max
DX ,DY

Ltotal = λadvLadv + λcycLcyc + λtransLtrans + λrdnLrdn. (5)

3 Experiments

3.1 Datasets and Experimental Setup

We conducted experiments on two publicly available neuroimaging datasets: the
IXI dataset [2] and the Brats2018 dataset [11]. Cross-sectional slices were ex-
tracted from each dataset and resized to 256×256 pixels for input into the deep
learning models. To ensure the generalization capability of our models, each
dataset was randomly partitioned by patient ID into training, validation, and
test sets with a ratio of 25:5:10.

For training, we trained our models for 100 epochs using the Adam optimizer
with a learning rate of 2×10−4. Cosine Annealing was employed for performance
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Input CycleGAN RegGAN AttGAN SynDiff CRAViM Resource

Fig. 3. Visual results of different methods. The first row depicts the T1 → T2 trans-
lation on the IXI dataset, while the second row illustrates the T2 → T1 translation on
the BraTS2018 dataset.

optimization. The loss weights were set as λadv = 1, λcyc = 15, λtrans = 1, and
λrdn = 5. All experiments were conducted on NVIDIA RTX 3090 GPUs with a
batch size of 4.

For evaluation, we adopted a combination of SSIM [18], NMI, LPIPS [19], and
MSE, as recommended by a recent study [5]. Although pixel-wise metrics such
as SSIM and MSE provide valuable information on structural similarity and
error, they are sensitive to minor spatial misalignments common in unpaired
datasets. The deep feature-based LPIPS, however, is more robust to such issues
and better correlates with human perceptual judgments. This metric suite there-
fore enables a comprehensive assessment of image synthesis quality. Specifically,
SSIM, LPIPS, and MSE were computed following z-score normalization, and
the reported results represent the average over five runs. Additionally, a paired
Student’s t-test was performed to evaluate the significance of the performance
differences between CRAViM and the compared methods (p = 0.05).

3.2 Experimental Results

Based on Fig. 3 and Table 1, a direct visual comparison of the conversion results
across the IXI and BraTS2018 datasets demonstrates that CRAViM exhibits a
significant advantage in cross-modal image translation tasks. Experimental re-
sults show that CRAViM significantly outperforms other competing methods
in key metrics such as SSIM and MSE (p < 0.05), thereby validating its supe-
rior performance in both detail restoration and global consistency preservation.
This high-quality modality conversion provides clinicians with additional com-
plementary information, enhances the interpretation of pathological regions, and
reduces the risk of missed diagnoses.

Furthermore, although the diffusion-based SynDiff exhibits a slight LPIPS
advantage and shows no significant difference in NMI compared to CRAViM
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Table 1. Quantitative comparison on the IXI and Brats2018 datasets. Results are
presented as mean ± standard deviation over five evaluations.

Method T1 → T2 T2 → T1

SSIM ↑ NMI ↑ LPIPS ↓ MSE ↓ SSIM ↑ NMI ↑ LPIPS ↓ MSE ↓

IXI Dataset

CycleGAN [22] 74.32
±.42

1.201
±.003

0.150
±.002

0.222
±.008

77.82
±.28

1.238
±.001

0.122
±.002

0.106
±.002

RegGAN [9] 75.39
±.21

1.209
±.003

0.132
±.001

0.221
±.001

77.72
±.34

1.239
±.002

0.121
±.001

0.112
±.003

AttGAN [17] 74.59
±.47

1.211
±.004

0.131
±.004

0.216
±.001

78.34
±.24

1.233
±.003

0.119
±.005

0.108
±.003

SynDiff [12] 77.46
±.36

1.227
±.004

0.113
±.001

0.209
±.007

80.18
±.67

1.251
±.008

0.111
±.003

0.108
±.004

CRAViM 78.59
±.14

1.228
±.003

0.124
±.001

0.165
±.001

81.94
±.20

1.265
±.002

0.098
±.001

0.083
±.001

Brats2018 Dataset

CycleGAN [22] 90.38
±.26

1.323
±.001

0.064
±.001

0.060
±.001

90.75
±.18

1.315
±.001

0.049
±.001

0.021
±.001

RegGAN [9] 89.31
±.27

1.315
±.002

0.068
±.004

0.065
±.006

90.25
±.08

1.311
±.001

0.051
±.002

0.022
±.001

AttGAN [17] 89.81
±.06

1.320
±.001

0.065
±.001

0.063
±.002

90.52
±.04

1.315
±.001

0.048
±.001

0.020
±.001

SynDiff [12] 92.24
±.22

1.339
±.004

0.053
±.001

0.055
±.004

92.31
±.89

1.326
±.007

0.047
±.001

0.018
±.002

CRAViM 92.43
±.15

1.344
±.001

0.051
±.001

0.047
±.001

93.32
±.17

1.335
±.002

0.039
±.001

0.016
±.001

(p > 0.05) on the IXI T1→T2 task, CRAViM achieves superior overall perfor-
mance with only 11.77M parameters (35% of NCSNpp) and 265.16G FLOPs
(4.8% of NCSNpp). The proposed framework reduces storage requirements by
64.9% (44.89MB vs. 128.16MB) and accelerates training by 110% (0.10s/iter
vs. 0.21s/iter), achieving an optimal balance between computational efficiency
and accuracy, thereby providing an efficient and practical solution for real-time
clinical applications.

3.3 Ablation Study

To validate the effectiveness of our core innovations, we conducted ablation stud-
ies on the IXI dataset. As shown in Table 2, the introduction of the cycle denoise
consistency training strategy significantly improves the ResNet baseline, achiev-
ing a 4.9% increase in SSIM and a 21.2% reduction in MSE for the T1→T2 task,
substantially outperforming the traditional cycle consistency strategy.
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Notably, even under our high-performance cycle denoise consistency training
framework, CRAViM outperforms the structurally similar convolutional gener-
ative network AttGAN in the T2→T1 task, achieving a 0.96% improvement in
SSIM and a 7.55% reduction in LPIPS. This enhancement is attributed to the
EVSS module, which establishes global dependencies through its selective scan-
ning mechanism, overcoming the limited receptive field of convolutional opera-
tions and better aligning with the continuity of anatomical structures in medical
images.

Table 2. Performance of different networks under various architectures on the IXI
dataset. Results are presented as the mean over five evaluations.

Network T1 → T2 T2 → T1

SSIM ↑ NMI ↑ LPIPS ↓ MSE ↓ SSIM ↑ NMI ↑ LPIPS ↓ MSE ↓

Cycle Consistency

ResNet [22] 74.32 1.201 0.150 0.222 77.82 1.238 0.122 0.106
AttGAN [17] 74.59 1.211 0.131 0.216 78.34 1.233 0.119 0.108

CRAViM 75.28 1.204 0.144 0.214 78.77 1.246 0.116 0.099

Cycle Denoise Consistency

ResNet [22] 77.96 1.226 0.128 0.175 81.56 1.263 0.103 0.083
AttGAN [17] 77.73 1.225 0.127 0.173 81.16 1.260 0.106 0.086

CRAViM (w/o rdn.) 77.41 1.225 0.128 0.178 78.45 1.244 0.116 0.103
CRAViM (w/o trans.) 78.21 1.226 0.125 0.171 81.53 1.262 0.101 0.084

CRAViM 78.59 1.228 0.124 0.165 81.94 1.265 0.098 0.083

Table 2 further reveals the synergistic effects of the innovative components:
(1) The cross-modal transport loss (Equation 3), as a novel indirect constraint
strategy, optimizes the feature space rather than directly supervising the image,
thereby avoiding conflicts with adversarial loss optimization; (2) When combined
with the random denoise loss (Equation 4), the MSE for the T1→T2 task is
reduced by an additional 7.30%, effectively enhancing the robustness of detail
reconstruction; (3) The complete model produces super-additive improvements
in both tasks, validating the orthogonal advantage of indirect control and direct
constraints. This hybrid optimization strategy successfully addresses the trade-
off between global consistency and local detail in medical image synthesis: the
transport loss guarantees the preservation of macroscopic anatomical structures,
while the denoise loss focuses on local feature fidelity. The synergy between these
two losses significantly enhances the model’s generalization ability.

4 Conclusion

In this paper, we propose a hybrid model, CRAVIM, along with a cycle denoise
consistency training framework to address the challenges of global structural
distortion and local detail loss in unpaired medical image synthesis. To the best
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of our knowledge, this is the first application of the Mamba architecture in
unsupervised image synthesis tasks. As such, our approach offers an efficient
and robust solution for unpaired medical image synthesis. A direct comparison
with other Mamba-based medical models remains challenging, as their architec-
tures—typically based on U-Net structures with patch merging—are generally
optimized for segmentation rather than synthesis. Future work will focus on ex-
tending our framework to 3D applications and validating its performance on
more diverse modalities and tasks involving long-range dependencies. We hope
this study will promote further advancements in the field of unpaired medical
image analysis.
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