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Abstract. External Radiation Therapy (ERT) is a key treatment in
oncology, aiming to deliver high radiation doses to the Planned Tar-
get Volume (PTV) while minimizing exposure to surrounding healthy
tissues and Organs At Risk (OARs). However, the proximity of PTVs
to OARs, the presence of multiple OARs, and the time-consuming na-
ture of manual subjective dose planning present significant challenges.
While recent advancements in Deep Learning (DL) have led to various
DL-based methods for dose prediction, it is still challenging to effec-
tively capture multi-scale features and propagate essential information
to related regions. In this work, we propose the Region-aware Attention
Net (RANDose), which addresses these issues by integrating Multi-Scale
Channel Spatial Attention (MSCSA), PTV Integration (PI), and Atten-
tion Fusion (AF) modules. Additionally, we introduce a Region-Aware
Loss function to ensure accurate dose distribution within the PTV while
minimizing radiation exposure to OARs. Experiments on the OpenKBP
dataset demonstrate that RANDose outperforms existing models in both
Dose Score and Dose Volume Histogram (DVH) Score, highlighting its
superior performance. Code is available at GitHub.
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1 Introduction

External Radiation Therapy (ERT) is a critical treatment modality in oncology,
designed to deliver a high radiation dose to the Planned Target Volume (PTV)
while minimizing the exposure to surrounding healthy tissues and Organs At
Risk (OARs) [2]. This presents a significant challenge, as PTVs are often in close
proximity to OARs, and in some cases, there may be multiple OARs that require
a careful planning to avoid the dose overlap. Additionally, manual dose planning
is time-consuming and prone to human errors [18]. With advancements in Deep
Learning (DL) [1,15,11] and its success in computer vision tasks [5,4,13,10,7,6],
researchers have explored DL-based approaches for radiation dose prediction
[17,14,19,8,9,16].

However, effectively capturing multi-scale features and propagating essen-
tial information throughout the network remains a challenge, both of which

https://github.com/jg9531/Dose
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Fig. 1: Architecture of the proposed RANDose.

are crucial for predicting varying dose intensities across different regions. To
address these limitations, we propose the Region-aware Attention Net (RAN-
Dose), which integrates Multi-Scale Channel Spatial Attention (MSCSA), PTV
Integration (PI), and Attention Fusion (AF) modules. Additionally, to man-
age dose planning in relation to complex anatomical structures, we introduce
the Region-Aware Loss, which ensures accurate dose distribution within the
PTV while minimizing the radiation exposure to OARs. Experiments on the
OpenKBP dataset show that RANDose outperforms existing models. RANDose
captures multi-scale dose features, resulting in more accurate dose predictions
across regions with varying dose intensities, while also protecting the OARs. Our
key contributions in this work are as follows:

– We introduce Multi-Scale Channel Spatial Attention (MSCSA), which en-
hances feature extraction by capturing spatial and channel-wise dependen-
cies at multiple scales.

– We propose PTV Integration (PI) to improve dose prediction accuracy by
incorporating explicit information about the PTV structure.

– We develop Attention Fusion (AF) to facilitate effective information propa-
gation across the network, refining dose estimation.

– We introduce Region-Aware Loss, which ensures accurate dose delivery to
the PTV while minimizing the unnecessary exposure to OARs.

2 Methodology

The architecture of the proposed RANDose is shown in Figure 1. RANDose
follows a U-shaped structure with an encoder (E) and a decoder (D), both con-
sisting of S stages, and incorporates three key modules: MSCSA, PI, and AF.
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Fig. 2: Architecture of the proposed (a) MSCSA module, (b) PI module, and (c)
AF module. ‘s’ represents the stage s of the network. The centered dots represent
multiple layers/ blocks.

The MSCSA module enhances dose prediction by extracting multi-scale con-
textual information, while the PI module integrates PTV information at each
stage of E , enabling the network to focus on the PTV region by incorporating
dose-relevant information alongside anatomical features. The AF module facili-
tates the propagation of essential information from E to D, ensuring better dose
estimation. The network takes three inputs: PTV, CT, and OAR, which are pro-
cessed through a convolutional layer to generate feature representations FP , FC ,
and FO. These features are then concatenated channel-wise and passed through
the network, with FP being utilized at each stage from the second stage onward.
The details of these modules are illustrated in Figure 2 and described below.

2.1 MSCSA module

The MSCSA architecture consists of two key components: the Multi-Scale Fea-
ture Extraction (MSFE) and the Channel Spatial Attention (CSA) blocks. The
MSFE block takes an input feature map (FIn) and processes it using parallel 3D
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convolutional layers with varying kernel sizes n×n×n. Smaller kernels focus on
fine-grained local details, while larger kernels capture broader contextual infor-
mation. The resulting feature maps from the parallel convolutions are combined
via element-wise addition, forming a comprehensive multi-scale representation
(FM ) that retains both local and global spatial dependencies.

To enhance feature relevance, the extracted multiscale features (FM ) are pro-
cessed through the CSA block, which employs a dual attention mechanism that
integrates channel-wise recalibration and spatial attention to dynamically refine
feature representations. The Channel Attention (CA) mechanism begins by ap-
plying a global average pooling layer to compute the spatial average for each
channel. The pooled output is then passed through a fully connected (FC) layer,
followed by a ReLU activation layer to introduce non-linearity. Then the features
are processed through a second FC layer, and a Sigmoid activation layer pro-
duces channel-wise attention weights that re-calibrate feature maps via scaling,
enhancing the most informative channels while suppressing less relevant ones.
This results in FCA, the channel-refined features. Simultaneously, the Spatial
Attention (SA) mechanism applies a 1× 1× 1 convolution to compute a spatial
attention map that highlights region-specific importance. The spatial weights
are then normalized with a Sigmoid activation and broadcasted across channels,
scaling the input features to enhance critical spatial regions. This produces FSA,
the spatially refined features. Finally, the outputs from both attention pathways
(FCA and FSA) are adaptively fused using a learnable weighted summation. This
fusion produces the final enhanced feature representation: FOut = FCA+α ·FSA

where α is the learned parameter.

2.2 PI module

The PTV Integration (PI) module is introduced at each stage s of E , starting
from the second stage. It effectively integrates the encoder features FE,s, with
the PTV features FP , enhancing the model’s ability to predict dose distributions
by combining spatially relevant PTV information with the structural features
captured by E . The PI module begins by resizing the Fp to match the spatial
dimension of the FE,s, then extracts multi-scale features from both FE,s and FP

using parallel convolutional layers with kernel sizes k× k× k, producing feature
maps FE,sk and FPk

. These multi-scale features are then refined using spatial
attention mechanisms applied separately at each scale, generating attention-
refined feature maps FAtt

E,sk and FAtt
Pk

. This attention mechanism directs focus to
the most critical regions for dose prediction. Finally, the refined feature maps
FAtt
E,sk and FAtt

Pk
are combined to form an integrated feature map. To ensure

the effective propagation of essential information, this integrated feature map
undergoes a final spatial attention layer, further refining its representation by
emphasizing the most significant regions. This process ultimately produces the
final attention-refined integrated feature map FInt,s, which serves as the input
to the MSCSA module in E from the second stage onward.
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2.3 AF module

The AF module is designed to fuse information from E with D through skip
connections at each stage of the network. These skip connections enable the
direct transfer of information, ensuring the preservation of crucial spatial details
that might otherwise be lost during downsampling. At each stage, the feature
map FE,s and the upsampled feature map FD,s+1 are processed through the
CSA blocks (described in Section 2.1), resulting in the refined feature maps FA

E,s
and FA

D,s+1, respectively. These refined feature maps are then fused to produce
Ffused,s = FA

E,s + β · FA
D,s+1, where β is the trainable parameters.

2.4 Loss

To optimize the proposed model, we design the Region-Aware Loss, which com-
bines standard L1 loss with region-specific penalties for the PTV and OARs. The
loss function consists of three main components: the standard L1 loss (LL1), the
PTV-specific loss (LPTV ), and the OAR-specific loss (LOAR). The LL1 is the
voxel-wise L1 norm over all voxels, expressed as:

LL1 = ∥ŷ − y∥1

where ŷ represents the predicted dose, y denotes the ground truth dose, and
∥∥1 denotes the L1 norm. The PTV-specific loss is designed to enforce accurate
dose estimation within the PTV. This term calculates the L1 loss over the voxels
within the PTV region, applying a learnable weight wPTV to scale the loss:

LPTV = wPTV · ∥ŷPTV − yPTV ∥1

where ŷPTV and yPTV are the predicted and ground truth doses, respectively,
within the PTV region. The OAR-specific loss penalizes excessive dose to OARs.
Similar to the PTV loss, the L1 loss is computed over the OAR region, and a
learnable weight wOAR is applied to scale the loss:

LOAR = wOAR · ∥ŷOAR − yOAR∥1

where ŷOAR and yOAR represent the predicted and ground truth doses, respec-
tively, within the OAR region. The total loss function is the sum of the three
components:

LTotal = LL1 + LPTV + LOAR

By combining these terms, the Region-Aware Loss ensures that the model opti-
mizes general dose prediction while prioritizing dose precision within the target
volume and minimizing dose to OARs.

3 Results and Discussion

3.1 Dataset and Performance Metrics

We evaluate the proposed model on the OpenKBP dataset [3], a publicly avail-
able collection of CT scans from patients receiving radiation therapy for head
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and neck cancer. The dataset is split into 200 training cases, 40 validation cases,
and 100 test cases. We use Dose Score (DS) and Dose Volume Histogram Score
(DVHS) as the evaluation metrics, following previous work [17,14,19,8,9,16].

3.2 Implementations Details

In the proposed model, the number of stages S is set to 5, the kernel sizes n in
the MSFE block are set to {3, 5, 7}, and the kernel sizes k in the PI module are
also set to {3, 5, 7}. The model is trained and evaluated using the official dataset
split, running for 80,000 iterations with a batch size of 2. Training is optimized
using the Adam optimizer with a learning rate of 1× 10−4. All experiments are
conducted on an NVIDIA H100 GPU with 80 GB of RAM.

3.3 Quantitative Results

The proposed model achieved a DS of 2.190, and a DVHS of 1.160. For fair com-
parison, we evaluate against prior state-of-the-art (SOTA) models [17,14,19,8,9,16]
using DS and DVHS. As shown in Table 1, RANDose outperforms all SOTA
methods, achieving the lowest scores across both metrics.

Table 1: Quantitative Evaluation of the RANDose Against SOTA Dose Predic-
tion Models: The best performance is highlighted in bold.

Method DS (↓) DVHS (↓)

Xu et al. [17] 2.753 1.559
Szalkowski et al. [14] 2.752 1.555
Zimmermann et al. [19] 2.620 1.520
Li et al. [8] 2.367 1.378
Lin et al. [9] 2.357 1.465
Wang et al. [16] 2.276 1.257
RANDose 2.190 1.160

3.4 Qualitative Results

In addition to the quantitative evaluation, we present qualitative results to
demonstrate the performance of the proposed RANDose model in Figure 3. Fig-
ure 3 (a) shows the dose distributions for a single patient in the axial, coronal,
and sagittal views, where the PTV volumes are close to the OARs. Despite this
challenge, the model predicts dose distributions that closely match the ground
truth while preserving OARs, as seen in the last two rows. Figure 3 (b) displays
dose distributions in the sagittal view for more patients, highlighting the model’s
generalizability, even in scenarios with multiple OARs. Figure 3 (c) presents a
few failure cases; for larger PTVs, the predicted dose slightly extends beyond
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Fig. 3: Qualitative results of the proposed model in the radiation dose unit of
Gray (Gy): (a) Dose predictions for a single patient in axial, coronal, and sagittal
views, (b) dose predictions for more patients in sagittal view, and (c) failure cases
in sagittal view.

the PTV region. This occurs because larger PTVs require more complex dose
distributions, making it challenging for the model to accurately predict the dose
boundaries, which may result in the dose extending beyond the intended region.
However, even in these failure cases, the OARs remain unaffected, demonstrat-
ing the model’s ability to maintain OAR protection despite minor inaccuracies
in PTV dose boundaries.

3.5 Ablation Results

Furthermore, we conducted a series of ablation experiments to assess the ef-
fectiveness of various components within the network and loss function. The
quantitative results of these experiments are summarized in Table 2.

– In Row 1, we present the results of the standard U-Net [12] for dose predic-
tion, which is used as the baseline for comparison.

– In Row 2, the convolution block of the baseline is replaced with the MSFE
block, resulting in improved performance compared to Row 1. This highlights
the importance of extracting multi-scale features.
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– Row 3 builds upon Row 2 by adding the CSA block, leading to further
performance improvements, indicating that channel and spatial attention
helps the model focus on essential features while minimizing irrelevant ones.

– In Row 4, we incorporated the PTV information using the PI module, which
resulted in improved performance. This highlights the effectiveness of inte-
grating PTV region information at each stage of the E .

– In Row 5, we use the AF module to fuse the information from E and D at
each stage of the network. This results in the best performance, highlighting
the effectiveness of attention based fusion.

For the ablation experiments on the loss function shown in Table 2 (b), the
L1 loss (i.e., Row 1) across all voxels is used as the baseline for comparison.
Building upon this, Row 2 introduces the LPTV loss, which guides the model to
focus on minimizing errors within the PTV, leading to improved performance
compared to Row 1. Row 3 further refines the model by incorporating all three
loss functions, striking a balance between accurate dose prediction within the
PTV and minimizing the dose to OARs, resulting in an additional performance
enhancement.

Table 2: Results of the Ablation Experiments: The best performance is high-
lighted in bold.

(a) Network modules

Row
ID

MSCSA PI AF DS
(↓)

DVHS
(↓)MSFE CSA

1 3.352 2.954
2 ✓ 3.110 2.741
3 ✓ ✓ 2.993 2.353
4 ✓ ✓ ✓ 2.589 1.621
5 ✓ ✓ ✓ ✓ 2.190 1.160

(b) Loss function

Row
ID LL1 LPTV LOAR

DS
(↓)

DVHS
(↓)

1 ✓ 2.401 1.451
2 ✓ ✓ 2.273 1.284
3 ✓ ✓ ✓ 2.190 1.160

4 Conclusion

In this work, we introduced the Region-aware Attention Network (RANDose),
a deep learning-based approach for radiation dose prediction. The model com-
bines Multi-Scale Channel Spatial Attention (MSCSA), PTV Integration (PI),
and Attention Fusion (AF) modules, along with a Region-Aware Loss function,
to improve dose prediction. RANDose captures multi-scale features important
for accurate dose delivery to the PTV while minimizing exposure to OARs. Ex-
perimental results on the OpenKBP dataset show that RANDose outperforms
existing models. For future work, we plan to enhance the network to predict dose
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without requiring OARs as input. This improvement will enable more flexible
dose predictions, reduce the need for manual OAR delineation, and enhance the
model’s applicability in real-world clinical scenarios where OARs may not always
be available or accurately defined.

Disclosure of Interests The authors have no competing interests to declare
that are relevant to the content of this article.
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