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Abstract. Cervical diseases present a significant global health chal-
lenge, especially in resource-limited regions with scarce specialized health-
care. Traditional analysis methods for thin-prep cytologic tests and whole
slide images are hindered by their reliance on time-consuming processes
and expert knowledge. Although Al-driven approaches have advanced
single-task screening, they often face difficulties adapting to multi-task
workflows and handling extreme class imbalance, thereby limiting their
practical deployment in real clinical settings. To address these challenges,
we propose a novel framework, MECDS, for multi-task early screening
of cervical diseases. Specifically, we design dynamic feature routing to
prevent inter-task interference and selectively process task-relevant fea-
tures. Furthermore, we employ asymmetric attention levels during knowl-
edge distillation to address class imbalance, thus enhancing performance
across diverse classes. Our extensive experiments on a large-scale dataset
comprising 29,774 whole slide images demonstrate that MECDS sur-
passes existing single-task and multi-task models across three key screen-
ing tasks: cervical cancer, candidiasis, and clue cell detection. Addition-
ally, MECDS exhibits remarkable extensibility, allowing for the efficient
integration of novel diagnostic tasks without the need for exhaustive re-
training. This unified framework holds great promise for improving com-
prehensive screening programs in resource-constrained healthcare envi-
ronments, potentially advancing early detection and improving health
outcomes. Our code is released at Github.

Keywords: Cervical Disease Screening - Multi-Task Learning - Feature
Routing - Knowledge Distillation

1 Introduction

Cervical diseases are widely recognized as prevalent and serious issues in gyne-
cological health, affecting millions of women worldwide, particularly in resource-
limited regions [1-3]. Fortunately, the progression of cervical cellular alterations
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can be detected through early screening methods like cytological examination,
enabling timely therapeutic interventions [4,5]. The thin-prep cytologic test
(TCT) has become the preferred technique for cervical cytology (CC) screen-
ing, which is a widely implemented diagnostic modality [6]. TCT not only facil-
itates the identification of cervical cancer lesions but also enables the detection
of various pathogenic infections that significantly impact patients’ reproductive
health and quality of life, such as candida colonization and bacterial vaginosis
(characterized by the presence of clue cells) [7,8]. However, the current paradigm
of CC screening relies on manual microscopic evaluation by pathologists, while
the large-scale nature of Whole Slide Images (WSIs) presents significant chal-
lenges in terms of time-intensive analysis and demands sophisticated professional
expertise [9]. These constraints impede the widespread implementation of CC
screening initiatives.

Recent advances in artificial intelligence (AI)-driven computer-assisted diag-
nosis (CAD) have demonstrated remarkable efficacy across CC screening, espe-
cially for individual tasks. Numerous studies have proposed task-specific archi-
tectures to improve patch-level analysis for cervical cancer [10] and candidiasis
screening [11]. Furthermore, some research has optimized the multi-stage [12]
or Multiple Instance Learning (MIL) frameworks [13] to better align with the
unique characteristics of TCT WSIs [14]. However, these task-specific models
face significant challenges in clinical practice. First, the current single-task mod-
els can only diagnose through sequential diagnostic workflows for the multiple
items in Cervical cancer screening, which presents critical limitations in effi-
ciency and clinical deployment. Secondly, the inherent class imbalance problem
poses a fundamental learning barrier, substantially impeding models’ ability to
learn discriminative feature representations. Therefore, there exists an impera-
tive need for the development of a unified architectural framework capable of
multi-task CC screening.

To tackle the aforementioned issues, we propose a novel Multi-task Early
Cervical Disease Screening (MECDS) framework, as shown in Fig. 1. The key
innovation of MECDS is the incorporation of an Multi-task Feature Adapta-
tion strategy (Fig. 1(a)). This strategy not only maintains model extensibility
by constraining inter-task interactions while preserving performance metrics,
but also dynamically selects specific features from redundant WSI representa-
tions for each task, thereby enhancing both model performance and computa-
tional efficiency. Additionally, MECDS employs an Asymmetric Knowledge
Distillation training scheme (Fig. 1(d)) to address the inherent class imbal-
ance characteristic of early screening scenarios. Our experiments demonstrate
that MECDS outperforms existing single-task and multi-task methods in three
common cervical disease screening tasks: cervical cancer screening, candidiasis
detection, and clue cell diagnosis. Moreover, MECDS exhibits remarkable exten-
sibility to novel diagnostic tasks through efficient fine-tuning without the need
for retraining.
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Fig. 1. Overview of the proposed MECDS. (a) The overall architecture of MECDS con-
sists of three main components: the image encoder, multi-task blocks, and task-specific
heads. The multi-task learning block main includes (b) Task-isolated Self Attention
layers and (¢) Dynamic Feature Routing modules. (d) The Asymmetric Knowledge
Distillation Training Scheme is introduced to address the extreme class imbalance.

2 Method

2.1 Network Architecture

In the proposed MECDS framework (Fig. 1(a)), each WSI is divided into N
patches. These patches are encoded using a LeViT-based [15] image encoder,
which is a robust and lightweight architecture that enhances inference speed
while maintaining high accuracy. The resulting features from each patch are
concatenated to form the WSI’s feature Fyys; € RV*C, where C represents the
dimensions of each patch feature. For multi-task learning, the framework initial-
izes M task-specific tokens T, ER' ¥ (m = 1,2, ..., M) for prediction. These to-
kens are combined with Fyysr and processed through L novel Multi-task Feature
Adaptation (MFA) modules. This core component comprises two Task-isolated
Self Attention (TSA) layers, a feed-forward network (FFN), and a Dynamic
Feature Routing (DFR) module. The TSA layer ensures independent learning
processes for each task, preventing inter-task interference and enabling efficient
scaling to new tasks. The DFR module dynamically selects task-relevant fea-
tures from the redundant WSI feature representations based on task-specific
requirements. Finally, the updated task tokens are individually processed by
corresponding task heads to generate classification results.
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2.2 Multi-task Feature Adaptation

Task-isolated Self Attention. For a general early screening model, the ability
to efficiently extend to new tasks is essential as it can reduce model maintenance
costs. However, traditional models typically demonstrate limited extensibility
due to the substantial training costs incurred by re-training the entire model. To
address above challenges, we introduce the TSA mechanism shown in Fig. 1(b),
which maintains task independence without compromising performance to re-
duce inter-task interference. Specifically, The TSA mechanism modifies the con-
ventional Transformer’s full self-attention architecture [16], where unrestricted
token interactions during attention map computation can lead to inter-task in-
terference. Our approach constrains the m-th task token, 7,,, to attend only to
itself and patch features during attention map calculation, preventing interac-
tions with other task tokens. Thus, when new tasks are introduced, since the
new task tokens do not interact with existing task tokens during computation,
they do not affect the performance of existing tasks, thereby achieving efficient
model extensibility.

Dynamic Feature Routing. WSIs contain rich but often redundant informa-
tion, making comprehensive processing computationally inefficient. In clinical
practice, pathologists optimize their diagnostic workflow by focusing on task-
relevant regions, such as specific biomarkers associated with particular diagnoses.
Inspired by this clinical selective attention approach, we propose DFR module,
illustrated in Fig. 1(c), which adaptively selects task-relevant features from the
WSI representation.

The DFR module employs an importance-driven mechanism to dynamically
route features based on their relevance to each task. For WSI feature Fyysi,
we compute a task-relevant matrix ¢ € RV*M: » = Softmax(Routers(Fyysi)),
where Routers comprises M learnable MLPs and ¢(n,m) represents the im-
portance score of the n-th patch feature for the m-th task. According to ¢,
we implement an adaptive feature selection strategy to select the most relevant
features for each task. Specifically, for the m-th task, we select the minimal
number of top-ranked features from the descending-sorted ¢,, such that their
cumulative probability scores exceed the threshold p = 0.5, and mask other re-
dundant features. The filtered patch features F,, are considered to be closely
associated with the m-th task and adequate for accurate diagnosis. They are
sequentially concatenated with the corresponding task token 7T, and processed
by the m-th expert network Expy,: [T, F..] = Expy([Tm, Fim]), with [] denot-
ing the concatenation operation. Notably, in the DRF module, each expert is
dedicated to handling a specific task. All processed task-relevant features F;n
are element-wise added to obtain the final feature representation F\;VSI, which is
then concatenated with all task tokens for subsequent learning.
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2.3 Asymmetric Knowledge Distillation

In cervical early screening, datasets typically exhibit extreme class imbalance,
with positive samples substantially underrepresented compared to negative ones.
This uneven distribution adversely affects both training convergence and test
set generalization. To address these issues, we propose an Asymmetric Knowl-
edge Distillation (AKD) training scheme based on the effective distillation [17]
framework (Fig. 1(d)). AKD aims to learn generalizable representations while
facilitating positive sample learning through a teacher-student paradigm [17,18].

Our training method comprises two distinct phases. In the initial teacher
phase, we train the model on a class-balanced subset created through dataset
resampling with a cross-entropy loss Lcg. This re-sampling training approach
may lead the teacher model to overemphasize positive class, potentially com-
promising overall representation learning [19,20]. Therefore, in the subsequent
student phase, the model is expected to learn generalizable representations by
training on a larger imbalanced dataset while distilling positive knowledge from
the teacher model. During the distillation process, we adopt an asymmetric strat-
egy that transfers knowledge from the teacher model with more focus on positive
samples, thereby mitigating the adverse effects of imbalanced class distribution.
Inspired by focal loss [21], We assign different focusing levels, denoted as w;
for positive samples and w_ for negative samples, through asymmetric weights
respectively:

1

o = (Fa)-, (1)
where 74 = 1 and y_ = 4 are focusing parameters for positive and negative
samples, respectively. Here, p represents the positive class probability predicted
by the student model, and p, is the shifted probability defined as p,, = max(p —
«,0), with p being the positive class probability predicted by the teacher model
and o = 0.2 being the probability margin. This asymmetric weight reduces
negative samples’ contribution when their probability is low. The asymmetric
distillation loss Lakp is formulated as:

{WJr = (1 - p)’Hﬂ

1
LAKD = TZ(W+210g E + w_élog
z

); (2)

where T' = 2 is the temperature parameter, and 2 = softmax(%) and z are
the soft probabilities for positive class predicted by the teacher and student
models, respectively. Finally, the student stage is optimized using a composite

loss function that combines Lakp and the cross-entropy loss Lcg.

3 Experiments

3.1 Dataset and Experimental Setup

Dataset. We establish a large-scale cervical multi-task screening dataset, con-
sisting of 29,774 WSIs with dimensions of 20,000 x 20,000 pixels. These images
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are collected from multiple scanning devices. Each WSI is annotated for three
tasks: cervical cancer screening, candidiasis detection, and clue cell diagnosis.
Due to the focus on early screening, each task uses binary class labels (0: nega-
tive, 1: positive). The dataset exhibits substantial class imbalance, with positive
sample counts of 14,387, 589, and 1,838 for the respective tasks. We imple-
ment a stratified sampling method with a 4:1 ratio to divide the dataset into
training and testing sets (Dirain, Dtest), €nsuring consistent class distributions
across both sets. To address the challenges of extreme class imbalance, we create
a balanced training subset (Dp_train). This balanced subset contains an equal
number of negative and positive samples sampled from the original Dy;ain. The
applications of these datasets are detailed in subsequent sections.

Implementation Details. In our experiments, WSIs are preprocessed by di-
viding them into multiple patches, each initially 1,024 x 1,024 pixels, and subse-
quently resized to 256 x 256 pixels for model input. The teacher model is trained
on the balanced Dg_tyain, While the student model is trained on the comprehen-
sive Dirain, as detailed in section 2. The multi-task models are developed using
PyTorch on an NVIDIA A100 GPU. We utilize the Adam optimizer with a fixed
learning rate of 1 x 10™* and a batch size of 16. A Cosine Annealing learning
rate scheduler dynamically adjusted the learning rate throughout a 50-epoch
training period for both teacher and student models. Two critical metrics for
early screening tasks, the area under the receiver operating characteristic curve
(AUC) and sensitivity (SEN), are reported in the subsequent experiments with
the percentage form.

Table 1. Comparision with single-/multi-task models. The best results are bolded,
and the second-best results are underlined.

Cancer Candidiasis | Clue Cell Average
AUC SEN |AUC SEN |AUC SEN | AUC SEN
DT-free [22] 89.13 77.89(92.50 86.86|98.23 96.04|93.29 86.93
TransMIL [23] 84.38 75.29]91.20 86.4498.50 95.01|91.36 85.58
LNPL-MIL [24] |89.96 85.12|92.31 89.37|98.43 97.82|93.57 90.77
MambaMIL [25] |88.65 79.44|91.29 79.28 |98.40 93.35|92.78 84.02

Type Model

Single-task

MOMA [26] 84.46 83.33|89.13 79.23|98.49 97.21|90.69 87.92
MTDP [27] 77.01 73.61|85.23 78.81|92.28 86.36 | 84.84 79.59
Multi-task |[SALL [28] 81.85 81.12|86.62 64.40 | 98.07 96.18|88.85 80.57

SSMTL-MD [29] |85.62 76.89|91.28 85.46|98.54 97.36 |91.81 86.57
MECDS (Teacher)|89.51 83.2892.09 89.10|98.78 96.35|93.46 89.58
MECDS (Student)|90.42 87.14|93.04 90.09(99.08 97.55|94.18 91.59

3.2 Comparison with Other Methods

To evaluate our proposed MECDS, we compare it with several state-of-the-art
(SOTA) methods across three common TCT tasks: cervical cancer screening,
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candidiasis detection, and clue cell diagnosis. Given the inherent challenge of
low sensitivity towards positive samples when trained on imbalanced datasets,
all compared methods are trained on the balanced Dp_t;ain and subsequently
tested on the imbalanced Dyes; to assess their performance in realistic screening
scenarios.

In the single-task setting, we compare our method with four robust single-
task models: DT-free [22] (designed for cervical cancer screening), TransMIL [23],
LNPL-MIL [24], and MambaMIL [25]. All models are independently trained
for each specific task. In the multi-task setting, we select four medical multi-
task models for comparison: MOMA [26], MTDP [27], SALL [28], and SSMTL-
MD [29]. As illustrated in Table 1, even without employing the AKD training
strategy, MECDS shows superior performance, outperforming existing multi-task
methods and nearly matching the best results achieved by single-task models.
Notably, all single-task models require separate training for each individual task,
leading to increased computational overhead and higher storage requirements.
The model’s exceptional performance is directly attributed to its innovative dy-
namic feature routing strategy, which effectively mitigates inter-task interference
while preserving the unique characteristics of individual tasks. Moreover, the in-
corporation of AKD further improved the model’s performance, achieving SOTA
results across all tasks.

3.3 Ablation study

We conduct ablation studies to evaluate the effectiveness of the proposed compo-
nents (DFRM and AKD), as illustrated in Table 2. The results demonstrate the
significant impact of the introduced DFRM across all tasks. Specifically, in cervi-
cal cancer screening, DFRM achieved remarkable improvements, yielding 2.8%
and 7.96% gains in AUC and sensitivity, respectively, compared to the base-
line model. These findings validate DFRM’s capability to effectively select and
transfer task-relevant features to the corresponding expert, thereby substantially
enhancing predictive performance on WSIs. In terms of distillation, we find that
directly applying conventional Kullback-Leibler (KL) [30] loss-based distillation
yields only marginal improvements in AUC while significantly diminishing the
model’s ability to predict positive cases, as evidenced by a decline in sensitivity.
In contrast, the proposed AKD loss circumvents this issue and even outperforms
the teacher model. This superior performance is attributed to the AKD’s fo-
cus on hard samples, which enables the student model to better assimilate the
teacher model’s knowledge, especially for positive cases.

3.4 Evaluation of Task Extensibility

The model’s ability to extend to new tasks is a key capability of a multi-task
model designed for early screening, underscoring its robustness and clinical ap-
plicability. To evaluate this, we conduct task extensibility experiments. We pre-
train the model using any two of the three tasks as base tasks and then fine-tun
it on the remaining task as an extension, to assess whether the model could
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Table 2. Ablation study of the key components of our framework:(a) Dynamic Feature
Routing Module (DFRM), (b) conventional KL loss-based distillation (KL) and (c) the

proposed Asymmetric Knowledge Distillation (AKD).

Configuration Cancer Candidiasis | Clue Cell Average

DFRM KL AKD| AUC SEN |AUC SEN |AUC SEN | AUC SEN
X X x [86.71 75.32|88.96 84.29|98.14 95.55|91.27 85.05
v x x [89.51 83.28|92.09 89.10|98.78 96.35|93.46 89.58
v v x |90.20 82.47|92.57 85.45|98.88 95.73|93.88 87.88
v X v ]90.42 87.14|93.04 90.09(|99.08 97.55(94.18 91.59

maintain performance across all three tasks. Specifically, for a trained MECDS,
when a new task is introduced, one can simply add a new task token, a new
task head, and a new router with a new expert in each MFA module, and only
train these components on the new task’s dataset, thereby facilitating compu-
tationally efficient learning of the new task. As shown in Table 3, the results
indicate that our model can expand to new tasks while preserving nearly un-
changed performance on previously learned tasks, achieving results comparable
to those obtained when training on all tasks simultaneously. This demonstrates
the model’s excellent extensibility to new tasks, aligning well with the demands
of real clinical scenarios.

Table 3. The performance of the task scalability experiments. “v” indicates tasks
selected for training, and “*” represents tasks not trained during fine-tuning but used
for multi-task testing in the final model.

Configuration Cancer |Candidiasis| Clue Cell
Cancer Candidasis Clue Cell| AUC SEN|AUC SEN |AUC SEN
v v - 90.29 87.23|92.46 87.62| - -

* * v 89.60 87.11|91.73 87.62|98.73 97.35
v - v 90.92 87.18| - - 199.03 97.29
* v * 90.12 87.11(91.22 91.08(99.03 96.77
- v v - - 92.78 88.11(99.04 98.06
v * * 90.18 86.21|95.65 87.98|98.84 97.16

4 Conclusion

In this study, we present MECDS, a unified framework for multi-task early cer-
vical disease screening. The framework adapts a novel Multi-task Feature Adap-
tation strategy with Dynamic Feature Routing to effectively address inter-task
interference by selectively processing task-relevant features. The Asymmetric
Knowledge Distillation scheme successfully tackles the extreme class imbalance
inherent in screening data with asymmetric focus levels for different samples.
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Experiments demonstrate superior performance over specialized single-task and
existing multi-task models, with excellent extensibility for accommodating new
diagnostic tasks without comprehensive retraining. Future work will expand
MECDS to cover a more comprehensive range of early cervical screening tasks.
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