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Abstract. Foundation models have demonstrated significant promise in
medical image analysis, particularly in pathology. However, their black-
box nature makes it challenging for clinicians to understand their decision-
making processes. In this paper, we evaluate the explainability of existing
pathology foundation models based on visual concepts. Considering the
hierarchical structure of pathological anatomy, comprising of regions,
units, and cells, we introduce a novel Hierarchical Concept-based Ex-
planation (HCE) method to illuminate how concepts at different levels
influence the model’s predictions. Specifically, our approach begins with
the utilization of a specialist-generalist collaborative segmentation model
to perform instance segmentation across various levels. We then employ
a surrogate model to approximate the target foundation model and com-
pute the Shapley values for each concept. Finally, we visualize these
contributions through a comprehensive global ShapMap. We evaluate
several state-of-the-art pathology foundation models, including CONCH,
UNI, and Virchow, on an adenoma classification task. The findings re-
veal that the explanations provided by CONCH and UNI show better
composability, suggesting they draw from a wider contextual understand
demonstrate great separability, reflecting a reliance on specific regions.
Additionally, we explore the consistency of concept explanations across
different foundation models.
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1 Introduction

Pathological examinations play a crucial role in cancer diagnosis [1], subtyping
[2], and survival prediction [3]. Recently, pathology foundation models [4–9] have
emerged as promising tools in image analysis, achieving impressive performance
on various downstream tasks through pre-training on large-scale pathology im-
ages or image-report pairs. However, their highly complex architectures and vast
number of parameters result in limited interpretability, undermining doctors’
trust in clinical use. Therefore, investigating the interpretability of pathology
foundation models is crucial.

To tackle this challenge, explainable artificial intelligence (XAI) has emerged
to ensure that a model’s decision is both transparent and comprehensible to
humans [10, 11]. Furthermore, post-hoc XAI methods [12] analyze and interpret
the decision process after a trained model makes predictions, thereby providing
insights into how outputs are predicted. Attribution-based approaches [13–16],
a classical XAI method, aim to quantify the contribution of each input to the
network’s output. However, they only offer explanations at the pixel or super-
pixel level, failing to reveal the specific visual features underpinning the model’s
decisions and thus lacking a deeper level of understanding [17]. Recently, concept-
based XAI has attracted considerable attention for its ability to provide more
understandable explanations [18, 19]. However, it often rely on human anno-
tations or specific concept discovery methods. Recent studies such as Explain
Any Concept (EAC) [17] and Lesion Concept Explainer (LCE) [20] have at-
tempted to use the strong zero-shot segmentation capabilities of SAM [21] to
automatically discover all concepts in an image, computing the Shapley value
[22] for each concept region to indicate its contribution to the final prediction.
While these models perform well for images with a single dominant target, they
generate suboptimal explanations for pathology images containing complex or
overlapping structures.

In pathology images, complex semantic information is typically organized into
three hierarchical structures, ranging from broad regions (e.g., tissue) to specific
functional units (e.g., glands) and individual cells [23]. These hierarchical layers
integrate macro-level tissue organization and micro-level cellular details, offering
a more holistic view of pathological changes. Clinicians integrate concepts across
these different levels to make diagnoses and provide treatment recommendations.
However, existing models like EAC [17] are usually limited to interpreting a sin-
gle tissue type. To address this issue, we propose a Hierarchical Concept-based
Explanation (HCE) method, which enhances the interpretability of foundation
models, while also aligning with the clinical significance of pathology images.
Specifically, we first adopt a hierarchical segmentation approach for pathology
images by integrating the specialist models’ robust segmentation abilities with
the strong generalization performance of a segmentation foundation model. This
method automatically produces a highly accurate and clinically meaningful set
of concepts from pathology images. Next, we compute the Shapley value for each
concept at every hierarchical level, quantifying its contribution to the model’s
predictions. However, computing the Shapley value under this approach can



Explain Any Pathological Concept 3

be computationally expensive. We employ a lightweight surrogate model [17]
by employing binary encoding instead of complex image inputs and replacing
large models with shallow neural networks. In addition, we present ShapMap,
a Shapley-based importance visualization method that illustrates the model’s
attention across different feature levels. In the experiments, we perform inter-
pretability analyses of pathology foundation models (UNI [4], CONCH [5], Vir-
chow [6]) on the pathology image classification task. The results reveal that these
foundation models effectively leverage local features but lack comprehensive fea-
ture integration. We further examine the similarity in focal areas across different
large models, offering new insights for optimizing pathology image analysis.

2 Methodology

As illustrated in Fig. 1, our proposed HCE consists of two main stages: a pathol-
ogy image classification stage and a hierarchical concept-based explanation stage.
In the classification stage, we use target foundation models Φt as the feature
extractor to produce an embedding of the input image, which is then passed
through a fully connected (FC) layer Ψ to obtain the classification prediction.
In the explanation stage, we first perform hierarchical instance segmentation.
Next, we train a surrogate model Φs to approximate the behavior of the target
foundation model Φt. We simplify the segmentation into binary features as input
to Φs, which outputs feature vector, then passed through the same FC layer Ψ
to obtain classification probabilities. Finally, we apply Monte Carlo [24] simula-
tions to compute the Shapley value for each concept at every hierarchical level,
representing its contribution to the classification. Through this process, we con-
struct a hierarchical ShapMap to visualize and explain the model’s predictions.
The following sections provide a detailed description of our model.

Hierarchical Segmentation. In clinical practice, pathologists rely on concepts
at multiple hierarchical levels to diagnose pathology images. Inspired by this pro-
cess, we perform hierarchical segmentation to isolate semantic targets at different
scales, including cells (epithelial cells, fibroblasts, and inflammatory cells, and
other cells), units (glands), and regions (tissue regions). Traditional segmenta-
tion models, trained via supervised learning for specific pathology segmentation
tasks, often achieve superior segmentation performance. Meanwhile, the latest
segmentation foundation model SAM2 [25], trained on large-scale datasets, of-
fers stronger generalization capabilities. We therefore combine the advantages
of both approaches, proposing a specialist-generalist collaborative segmentation
model. Specifically, we first use specialized models for each scale to generate a se-
ries of masks. For the foreground tissue region, we apply a segmentation method
based on grayscale values [26]. For the gland region, we employ a U-Net model
[27] trained on the GlaS dataset [28]. For the cell region, we utilize HoverNet
[29], a model known for its strong performance on cell segmentation datasets.
Based on the generated masks from these specialized models, we extract the
bounding boxes of each instance as spatial prompts to SAM2. Finally, SAM2
generates a set of concepts for each hierarchical level. Here, we represent each
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Fig. 1. The overall framework of our proposed HCE, including a pathology image
classification stage and a hierachical concept-based explanation stage.

set of concepts as Cl = {c1l , c2l , . . . , cnl }, where n denotes the number of concepts
at a given hierarchical level l.

Surrogate Model. Our aim is to assess the contribution of each segmented
concept to the classification outcome using Shapley value [22]. However, the
structural complexity and large number of parameters in pathology foundation
models pose significant computational challenges for Shapley value analysis. To
address this issue, we adopt a lightweight surrogate model Φs to approximate the
target foundation model Φt. Inspired by the EAC model [17], we employ the per-
input equivalence method to construct the surrogate model Φs. Specifically, Φs

employs a two-layer linear network for feature extraction that achieves competing
prediction accuracy while maintaining relatively low computational complexity.
Given a segmented pathology image, Φs processes a binary concept vector, each
element corresponding to a concept, i.e., a value of 0 indicates that the concept
is masked, while 1 indicates retained. The extracted features are then projected
through a shared fully-connected layer Ψ to produce classification probabilities
Ys. During optimization, we freeze the FC layer Ψ and minimize the cross-entropy
loss between the surrogate predictions Ys and target probabilities Yt from the
classification stage:

L = −(Yt log Ys + (1− Yt) log(1− Ys)). (1)

Hierarchical ShapMap. Shapley value has been widely adopted in machine
learning to quantify the contribution of individual features or concepts. We com-
pute Shapley value based on the trained surrogate model to obtain the contri-
bution of each concept, which is formulated as a enumerated weighted sum of
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all possible marginal contributions from each concept. We define the marginal
contribution of the i-th concept cil at level l as the difference between the model
prediction on S ∪ {cil} and S, where S ⊆ Cl \ {cil}:

∆cil
= v(S ∪ {cil})− v(S). (2)

Here, v(S) represents the prediction of the surrogate model Φs on the image x,
using only the concepts in S with the remaining concepts masked. Then, the
Shapley value of concept cil is defined as:

φcil
(x) =

1

n

n∑
k=1

1(
n−1
k−1

) ∑
S∈Sk(i)

∆cil
(S), (3)

where n represents the number of concepts at each level l, Sk(i) represents the
set of all coalitions of size k that do not include cil. Given the large number of
possible coalitions, we approximate the Shapley value using Monte Carlo sam-
pling [24]. Specifically, for each concept, we sample K coalitions and approximate
the Shapley value as:

φ′
cil
(x) =

1

K

K∑
k=1

∆cil(Sk). (4)

To further visualize how different concepts contribute to classification, we
propose ShapMap at each hierarchical level based on Shapley values. For each
scale, we define the mask corresponding to the positive Shapley value as red to
yellow, indicating its positive contribution to the classification, while the mask
corresponding to the negative Shapley value is defined as deep blue to white.

3 Experiment

Implementation Details and Dataset. For validation and analysis, we select
three state-of-the-art pathology models: (1) UNI [4] is a vision foundation model,
trained on over 200 million pathology H&E and IHC images; (2) CONCH [5] is
a vision-language foundation model, trained on over 1.17 million image-caption
pairs; (3) Virchow [6] is a vision foundation model, trained on 1.5 million whole
slide images. For the binary classification task, we employ the image encoder
from three models as a frozen feature extractor, training only the classifier. The
FC layer is trained for 100 epochs using the AdamW optimizer with weight decay
of 0.001. The surrogate model takes a (1000, X) binary matrix as input, where
X denotes concept count per level. All images are resized to 512×512 pixels, and
the batch size is set to 32. All experiments are performed using Pytorch on an
NVIDIA GeForce RTX 4090 GPU.

We use the publicly available Chaoyang dataset [30] for colonoscopy classi-
fication tasks. Images of normal and adenoma classes are selected, resulting in
the training set of 1,111 normal images and 1,404 adenoma images, and the test
set of 705 normal images and 840 adenoma images. Each image contains 286
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cells (e.g., epithelial cell), 4 units (e.g., gland), and 2 regions (e.g., foreground)
on average. The model’s interpretability is evaluated on the test set.

Evaluation Metric. For the classification task, we use accuracy as the metric to
evaluate classification performance. For model interpretation, we use the deletion
AUC [31] as the metric to evaluate the model’s separability and composability.
The evaluation starts with an unmasked image and gradually removes concepts
in descending order of Shapley values. Composability reflects the model’s ability
to integrate multiple concepts from different local regions, and a higher dele-
tion AUC within the same scale suggests the model maintains good prediction
accuracy despite some concept removal, indicating stronger composability and
reliance on multiple local features. While separability indicates reliance on a few
local regions, which a lower deletion AUC value indicates.

Meanwhile, different foundation models may focus on the similar regions
across the same hierarchical level of pathology images. To quantify the similarity
of positively contributing concepts across models, we compute the similarity
between two models as follows:

Similarity =
num(CA

l ∩ CB
l )

num(CB
l )

, (5)

where CA
l and CB

l represent the sets of positively contributing concepts for
models A and B in each level l, respectively. num represents the number of
concepts in the set.

Classification Performance of Foundation Models. Considering the multi-
level semantic information in pathology images, we investigate the classification
performance of different foundation models based on hierarchical segmentation
results. Fig. 2 presents the visualization of segmentation results across different
hierarchical levels of the pathology images.

As shown in Table 1, the classification accuracy of all models increases across
three levels from cell, unit to region in pathology images. This result suggests
that as the scale expands from individual cells to larger regions, models gain
richer contextual information, leading to more accurate predictions. The region
level integrates not only local details from cells and units but also broader spatial
features, providing the most substantial contribution to classification decisions.

When comparing the three pathology foundation models, CONCH consis-
tently achieves the highest classification accuracy across all levels. This indi-
cates its superior ability to capture multi-scale information. It effectively ex-
tracts pathological features from larger structures of unit and region, while also
preserving fine-grained details at the cell level. These results highlight CONCH’s
stronger representational capacity and robustness.

Separability and Composability of Foundation Models. Table 2 presents
the deletion AUC of different foundation models in adenoma images. Across three
hierarchical levels, Virchow exhibits the lowest deletion AUC, indicating higher
separability, meaning it relies more on single concepts for decision-making. In
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Fig. 2. Segmentation results of hierarchical levels in pathology images.

Table 1. Accuracy (%) of UNI, CONCH,
and Virchow across different levels for
adenoma classification.

Method Cell Unit Region

UNI [4] 2.02 86.78 97.14
CONCH [5] 8.33 98.21 99.04
Virchow [6] 3.09 87.14 94.16

Table 2. Composability (%) of UNI,
CONCH, and Virchow across different
levels for adenoma classification.

Method Cell Unit Region

UNI [4] 88.04 47.74 47.76
CONCH [5] 80.54 74.31 61.80
Virchow [6] 74.51 43.93 30.56

contrast, UNI and CONCH show higher AUC values, suggesting better compos-
ability, as they integrate multiple concepts to form predictions.

At different levels, UNI achieves the highest deletion AUC at the cell level,
indicating strong composability by integrating multiple cellular features into its
decisions. Meanwhile, CONCH demonstrates the best composability at the unit
and region levels, effectively capturing structural features by integrating spatial
concepts at larger scales. Clinically, high separability implies that a model be-
haves like a “key abnormality detector”, aiding doctors in quickly identifying the
precise location of abnormalities, which is an essential factor for accurate diagno-
sis. In contrast, high composability suggests a more holistic “pattern reasoning”
approach by integrating information across different levels or regions. This ca-
pability helps clinicians gain a comprehensive understanding of the lesion within
its larger pathological landscape, facilitating a more holistic diagnosis.

ShapMap. To further illustrate what features foundation models focus on across
hierarchical levels in pathology images, we present several case studies, as shown
in Fig. 3. In the visualization, HCE reveals the key concepts that model decisions
primarily rely on, such as regions, units, and cells, which are highlighted in red. It
can be observed that at different hierarchical levels, CONCH mainly focuses on
true pathological regions, which aligns with its higher classification accuracy. At
the cell level, all models exhibit omissions in identifying abnormal cells, further
validating their lower accuracy at this scale. Furthermore, across all three levels,
a coarse-to-fine relationship is observed. This method allows pathologists to first
identify suspicious lesion areas at the region level, then analyze abnormal glands
at the unit level, and finally examine abnormal cells.
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Fig. 3. Case Studies illustrating the hierarchical focus of foundation models in pathol-
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Fig. 4. Similarity of features of UNI, CONCH, and Virchow across different levels.

Similarity of Features Focused by Foundation Models. Fig. 4 presents
the similarity scores among three models across each level. At broader levels
(unit and region), most features attended by UNI are also captured by CONCH,
but CONCH identifies additional regions, contributing to its superior perfor-
mance over UNI. This insight highlights a key direction for model improvement,
identifying relevant regions attended by high-performing models but overlooked
by others. At finer hierarchical levels, the similarity among the three models is
lower, possibly due to the high diversity of cell-level concepts. None of the mod-
els appear to have learned a consistent set of meaningful features, resulting in
less overlap in their areas of attention. Furthermore,the common features that
the model focuses on are also shown in ShapMap obviously, which may require
special attention from doctors.

4 Conclusion

In this study, we introduced a Hierarchical Concept-based Explanation (HCE)
method for pathology image analysis. By using the specialist-generalist collabo-
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rative segmentation model, we achieve automatic concept discovery. To reduce
computational overhead, we employ a lightweight surrogate model with binary
encoding. We use Monte Carlo simulations to compute the Shapley value for
each concept and introduce a visualization method, ShapMap. We evaluate the
classification features of different pathology foundation models. Experimental
results indicate that these foundation models effectively leverage local features
but lack comprehensive feature integration.
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