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Abstract. Functional magnetic resonance imaging (fMRI) analysis mod-
els the detected temporal signals as a superposition of linear hemody-
namic responses (HDR) to task-related stimuli, yielding spatial maps
of brain function. However, recent studies have demonstrated that neu-
ral responses exhibit significant nonlinearity, challenging the validity of
such linear models. In this work, we propose a novel mathematical frame-
work, Regional Synchronization based on Graph Eigenmodes (RS-GEm),
to analyze fMRI data and localize brain activation without relying on
the linear assumptions of traditional models. Using Laplacian Eigenmaps
(LEM), we capture the graph structure of the brain and derive its eigen-
modes. These eigenmodes characterize possible spatial organizations of
neural activity across different hierarchical levels of the human brain.
By computing the regional synchronization of fMRI signals embedded
in the eigenmode space and employing clustering metrics, we extract
task-relevant eigenmodes to identify task-evoked activation regions. Val-
idations on the Human Connectome Project (HCP) dataset demonstrate
that our method can map task-evoked brain activations without the lin-
ear assumptions. The proposed approach offers a novel methodological
framework for elucidating understudied aspects of brain function fea-
tured with nonlinear HDRs, thereby facilitating a more complete under-
standing of brain dynamics.
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1 Introduction

Functional magnetic resonance imaging (fMRI) is an important non-invasive tool
for investigating the mechanisms of brain neural activity. fMRI captures tempo-
ral signals through the neurovascular coupling effect, which is considered as the
linear superposition of predetermined hemodynamic responses to specific condi-
tion stimuli in fMRI tasks [3]. Based on this linear assumption, researchers can
⋆ Corresponding author.
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use a general linear model to fit fMRI signals in the time domain and localize
brain activity related to specific tasks or behaviors [13]. Widely used analysis
tools, such as Statistical Parametric Mapping (SPM), are based on the gen-
eral linear model. However, increasing evidence shows that the nonlinearity of
neurovascular coupling [2, 19], along with spatial variations of brain hemody-
namics[7, 9], challenging the linear assumption, leading to insufficient or inap-
propriate mapping of brain activation [12, 14]. Therefore, the development of a
data-driven method without linear assumptions is essential for improving the
detection capability of neural activity and advancing our understanding of the
human cognitive neural architecture.

The human brain is an immense network composed of intricate neural cir-
cuits, capable of interacting with its complex surrounding environment. During
the brain’s neural computations, both local and long-range neurons coordinate
and integrate their activities, resulting in the spatial organization of neural activ-
ity [8, 23]. This perspective offers novel insights for studying task-evoked neural
activations in the human brain. In the emerging field of neural manifolds, neu-
robiological observations across different spatial scales have revealed that the
brain exhibits a set of latent activity patterns [4, 15, 16]. These patterns encap-
sulate the coordinated behaviors of large populations of neurons. Furthermore,
recent studies [1, 6, 11] suggest that the brain’s neural dynamics can be under-
stood through intrinsic spatial modes, which represent the system’s fundamental
resonance patterns. Among these approaches, Laplacian Eigenmaps (LEM) ef-
fectively exploit the graph-structured nature of brain networks, decomposing
functional connectivity into distinct spatial eigenmodes. The coordinated exci-
tation of these eigenmodes forms the foundation of the brain’s spatiotemporal
dynamics. From this perspective, we aim to characterize neural activity by iden-
tifying which spatial eigenmodes are activated in the human brain, extracting
deep information embedded within these modes to detect task-related neural
activations.

Inspired by the capacity of the Laplacian Eigenmaps (LEM) method to cap-
ture regional patterns of neural activity, we propose a novel framework, Regional
Synchronization based on Graph Eigenmodes (RS-GEm), for detecting task-
induced neural activation. In this framework, we first construct a brain graph
that reflects the brain’s intrinsic functional organization, derived from functional
connectivity data. By applying the graph Laplacian operator, we decompose this
graph structure and derive eigenmodes across different gradients. These eigen-
modes uncover the deep connectivity structures of the brain, revealing neural
coordination states across multiple hierarchical levels. Functional information
within the local neighborhood of each voxel is derived from these eigenmodes
and subsequently integrated using Principal Component Analysis (PCA) to com-
pute the regional synchronization of voxels. This metric quantifies the degree
of coordination between a voxel and its functionally related neighbors under
task-induced conditions. By analyzing the clustering scores of regional synchro-
nization across eigenmodes, we identify task-relevant eigenmodes and generate
brain activation maps. Our method achieves accurate detection of task-induced
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activations at the individual level and identifies eigenmodes specifically associ-
ated with task stimulation, providing a novel perspective for analyzing brain
dynamics.

2 Materials and Methods

2.1 Data Acquisition and Preprocessing

This work primarily utilized the preprocessed fMRI data from the Human Con-
nectome Project (HCP) acquired on a 3T scanner, including resting-state fMRI
(rfMRI) data from a subset of 800 participants and task-based fMRI (tfMRI)
data from 100 unrelated adult participants [18, 20]. To assess within-subject re-
producibility, HCP test-retest data from 45 participants were also incorporated.

Fig. 1. The overall architecture of our proposed RS-GEm. (A, C) Group-level
and individual-level brain graph construction. (B) Individual-level fMRI data process-
ing. (D) Eigenmodes of the brain. (E) Regional Synchronization computation. (F)
Task-related eigenmodes extraction and activation mapping.
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We conducted additional processing on the preprocessed HCP data to en-
hance the quality of individual-level fMRI data characterized by a low signal-
to-noise ratio (Fig. 1B). Based on the different phase-encoding directions in
magnetic resonance imaging, the fMRI data were divided into two groups: from
left to right (LR) and from right to left (RL). By integrating normalized LR and
RL signals, we generated a new fMRI signal with an extended temporal dimen-
sion to improve voxel signal robustness and enhance the correlation of activated
voxels [5]. Furthermore, we filtered the extended fMRI signal using a modified
spatial filter linked to brain structure. Compared to traditional isotropic Gaus-
sian filters, this filter leverages brain structural information to more accurately
denoise and enhance the signal.

2.2 Individual Graph Construction and Eigenmodes

Laplacian Eigenmap (LEM) projects complex, high-dimensional brain signal
data into a lower-dimensional space while preserving the intrinsic topological
structure by maintaining the regional connectivity of the graph [10, 17]. To
achieve this, we first construct a functional connectivity (FC) graph for the brain
in the task state. Since individual-level signals often contain noise that disrupts
graph structure, we calculate a group-level resting-state FC (rsFC) graph as a
stable backbone (Fig. 1A) and integrate individual task-state FC data into this
framework (Fig. 1C). This ensures stability while embedding individual-specific
information.

The brain’s communication structure is represented as a graph G = (V, E),
where V denotes the voxels sampled from the gray matter cortical surface as
nodes (n = 59, 412 in this work), and E represents edges based on correlations in
the functional connectivity (FC) matrix. The adjacency matrix A is constructed
from resting-state FC (rsFC) data by assigning edges (aij = 1) for the top k
strongest correlations for each node, ensuring symmetry (with k = 300 in this
work). This process results in a sparse, binary adjacency matrix A, where aij = 1
if the correlation cij is among the k largest values in row i of the dense FC matrix,
and aij = 0 otherwise.

To incorporate individual-specific information, task-state FC data are nor-
malized and assigned as weights to the edges in A, producing an individual-level
weighted adjacency matrix B. The graph Laplacian LG is then defined as the
difference between the degree matrix DB and the weighted adjacency matrix B,
i.e., LG = DB−B. Here, the degree matrix DB is a diagonal matrix where each
diagonal element is the sum of the weights of all edges connected to the node.

The eigenfunctions Ψ = {ψ1, ψ2, · · · , ψn} are computed by solving the eigen-
value problem:

LGψi = λiψi, i ∈ {0, 1, · · · , n}. (1)

The resulting eigenvectors Ψ represent the spatial activation patterns of the
brain under different gradients, revealing the coordinated states of nodes in the
graph (Fig. 1D). Nodes with similar eigenvector values tend to co-activate and
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participate in specific tasks or functional activities. Each eigenvector ψi corre-
sponds to a unique spatial mode of brain organization, referred to as an eigen-
mode. These patterns project high-dimensional FC data into a lower-dimensional
space, uncovering the hierarchical and distributed organization of brain function,
analogous to harmonics in signal resonance [6].

2.3 Functional Similarity and Synchronization

These eigenmodes specifically reflect the coordination strength among voxels
(i.e., graph vertices) under a particular feature mode, indicating the synchro-
nization level of voxel responses to task stimuli. Based on these eigenmodes,
we further identified functional neighborhoods and analyzed regional functional
characteristics of the voxels (Fig. 1E).

Specifically, if voxels i and j have similar values under an eigenmode ψm,
they are considered to share similar functional roles and belong to the same
functional neighborhood. For each voxel, we define its functional neighborhood
Nm

r , which consists of the r closest voxels in the eigenmode ψm. The similarity
between voxels is quantified by a Gaussian kernel weight matrix W, defined as:

Wij = exp

(
−
d2ij
2σ2

)
, (2)

where dij is the Euclidean distance between voxel i and voxel j in the eigenmode
ψm, and σ controls the range of similarity.

Using the computed weight matrix W, we construct the locally enhanced
fMRI data matrix XWi

for each voxel i, defined as:

XWi
= Wi ·

[
xi,x1,x2, · · · ,xr

]
, (3)

where Wi· is the weight vector for voxel i, and xi,x1, · · · ,xr are the fMRI signals
of voxel i and its functional neighbors. This matrix provides a weighted aggre-
gation of fMRI signals within the functional neighborhood of voxel i, capturing
its regional functional characteristics.

Next, we perform PCA on XWi
and compute the contribution of the first

principal component. To quantify this, we define a synchronization metric (Syn)
as follows:

Syn(m, i) =
λ0√

λ20 + λ21 + λ22 + · · ·+ λ2r
, (4)

where λ0, λ1, · · · , λr are the eigenvalues obtained from PCA on XWi
, sorted in

descending order, and m corresponds to the eigenmode ψm. The contribution
of the first principal component reflects the linear correlation and consistency
of the locally enhanced fMRI data [24], indicating the spatial coordination of
signals within the functional neighborhood.

This synchronization metric captures the dynamic changes in fMRI data un-
der various eigenmodes ψm, providing a quantitative measure of the coordinated
activation of voxels in response to task stimuli. Specifically, it reflects the extent
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to which functionally related voxels exhibit synchronized responses under exter-
nal task-driven conditions. By emphasizing the contribution of the first principal
component, the metric highlights the dominant mode of regional coordination,
effectively characterizing the cooperative activation of voxels.

2.4 Clustering Score and Activation Map

To evaluate the functional significance of eigenmodes, we introduce a clustering
score to quantify the regional coherence of synchronization values within each
eigenmode (Fig. 1F). Unlike the functional neighborhood Nm

r , which is based on
feature similarity, the clustering score uses the spatial neighborhood Ns derived
from anatomical proximity. The clustering score is defined as:

Clustering Score =

n∑
i=1

1

1 +
(
Syn(m, i)− 1

ki

∑
j∈Ns(i)

Syn(m, j)
)2 , (5)

where Syn(m, i) is the synchronization metric for voxel i, Ns(i) represents the
spatial neighborhood of voxel i, ki is the number of neighbors in Ns(i), and
n is the total number of voxels. The clustering score evaluates the intensity of
synchronization changes between a voxel and its spatial neighbors, which reflects
the regional coherence of each eigenmode. This allows us to identify eigenmodes
most relevant to task stimuli, as task-related patterns tend to exhibit higher
regional consistency.

By calculating the clustering score, we identify the top four eigenmodes most
relevant to task stimuli, where the brain exhibits stronger coordination under
these eigenmodes. This provides a systematic method to link deep functional
gradients to task-specific neural mechanisms. Finally, we compute the average
synchronization map across these four eigenmodes to generate the final activation
map of the task-related voxels.

3 Experimental Results

3.1 Activation Detection on Motor task

Based on the RS-GEm framework, we conducted an in-depth analysis of brain
activity using the tfMRI data from the HCP dataset, focusing on the detection
of task-related voxels. Taking the motor execution task as an example, the HCP
dataset divides this task into 10 blocks (Fig. 2A), each consisting of a visual cue
(3 seconds) followed by 10 motor trials (12 seconds). The motor task involves
five types of movements: right hand, left hand, right foot, left foot, and tongue.

By analyzing the fMRI time series within each block, the RS-GEm method
successfully captured high-intensity signals from functional subregions of the pri-
mary motor cortex (Fig. 2B). Furthermore, the neural activation regions induced
by different motor subtasks corresponded, with fine granularity, to the functional
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body control map established in behavioral neuroscience (Fig. 2C). In the acti-
vation maps, we also observed minor neural activations that were not directly
related to motor execution, which likely reflect background neural activity of
the participants. At the individual level, the proposed method demonstrated
exceptional accuracy in identifying task-related activation regions.

Fig. 2. Brain activation mapping for HCP motor task. (A) The diagram of the
HCP motor task. (B) Activation maps in HCP motor task generated using RS-GEm.
(C) Functional map of the human body control. (D) Activation maps for the left-hand
motor task in the test-retest dataset generated using the RS-GEm and GLM methods.

The test-retest dataset provided by HCP was used to evaluate the within-
subject reproducibility of the proposed method in detecting brain neural acti-
vations. This dataset includes 45 participants, each of whom underwent two re-
peated fMRI scans. We tested the activation maps associated with the left-hand
motor task using both the RS-GEm method and the traditional GLM method
within this dataset (Fig. 2D). The results show that, compared to the GLM, the
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RS-GEm method demonstrates superior spatial consistency between test and
retest data, underscoring its enhanced robustness and reliability in identifying
neural activations.

3.2 Eigenmodes Analysis in Brain Activity

Distinct brain regions coordinate through synchronous fluctuations to achieve
complex functions [21, 22]. Specific eigenmodes reveal the functional working
modes of brain activity in different subdomains, where neurons collaborate with
specific regions to perform specialized tasks under certain eigenmodes. The brain
accomplishes specific tasks under the combined influence of multiple eigenmodes.
Consequently, synchronization maps derived from different eigenmodes reflect
the degree of voxel-level coordination within specific functional modes.

Using the Clustering Score, eigenmodes with higher neural synchrony during
task states can be identified, as these eigenmodes contribute more effectively to
task performance. For the motor execution task, we observed that the top four
eigenmodes with the highest scores across various motor subtasks consistently
corresponded to the same eigenmodes (Fig. 3A), with Clustering Scores signif-
icantly exceeding those of subsequent eigenmodes. In the group-level analysis
of resting-state data, these four eigenmodes exhibited high coordination in the
motor cortex regions (Fig. 3B), further validating the practical significance and
effectiveness of the eigenmodes in analyzing neural activity.

Fig. 3. Task-relevant eigenmodes identified using the Clustering Score. (A)
The top four eigenmodes with the highest Clustering Scores during the motor execution
task. (B) Four eigenmodes show high coordination in motor cortex regions.

4 Conclusion

In this study, we proposed RS-GEm, a novel framework that leverages graph
eigenmodes to detect brain activity. By constructing individualized weighted
brain networks and deriving distinct eigenmodes through Laplacian Eigenmaps,
RS-GEm quantifies regional synchronization to reliably identify task-evoked ac-
tivations. Our findings demonstrate that RS-GEm achieves high sensitivity at
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the individual level and exhibits strong stability in detecting task-induced ac-
tivations. Furthermore, the extracted eigenmodes provide valuable insights into
hierarchical neural coordination, revealing that brain activation arises from the
complex interplay of distributed functional regions. This framework offers a pow-
erful and flexible tool for analyzing neural activity, with the potential for appli-
cation to the study of neurological and psychiatric disorders. Future work will
focus on integrating multimodal data and exploring condition-specific paradigms
to further validate the robustness of RS-GEm and deepen our understanding of
large-scale brain dynamics.
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