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Abstract. Medical image segmentation is the core technology of pre-
cision medicine, which can improve diagnostic accuracy, optimize treat-
ment plans, and enhance research efficiency. U-Net is a classical and
fundamental model in this field. Because of its excellent architecture,
Transformer and MLP have been fused on top of it in subsequent work,
all with good results. Each of these methods has advantages, but none
further explores the image’s low-frequency feature information. The low-
frequency feature information reflects the overall structure and contour
of the image and provides key background and boundary information
for image segmentation. To address this problem, we explore the poten-
tial of Wavelet Convolutions for medical segmentation tasks by propos-
ing a novel feature extraction block: the Image Multi-frequency Fea-
ture Information Extraction (IMFIE) block. The IMFIE block can ef-
fectively extract both high-frequency and low-frequency feature infor-
mation from images by combining Wavelet Convolutions. This approach
takes full advantage of their excellent ability to mine and utilize low-
frequency information in images while expanding the receptive field at
a low cost. We propose a novel model, UWT-Net, which leverages the
IMFIE block and reconstructs the classical U-Net. Experiments on three
public pathology image datasets show that the proposed method outper-
forms the state-of-the-art baseline U-KAN. Code is available at https:
//github.com/zpc2002zpc/UWT-Net.git.

Keywords: Medical image segmentation - Low-frequency feature infor-
mation - U-Net - WTConv

1 Introduce

Medical image segmentation is an important research direction in medical image
processing, which is extremely important in many aspects of clinical medicine,
medical research, and medical equipment development. With the rapid devel-
opment of deep learning and the popularization of computer-aided diagnosis,
more and more research has focused on using deep learning for medical image
segmentation [19].
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U-Net is a milestone in this area [15], which uses a symmetric encoder-decoder
architecture for end-to-end training and utilizes hopping to fuse feature infor-
mation at different scales. Nested Skip Connections and Dense Feature Fusion
proposed by U-Net++ [21] significantly improve the performance of U-Net by
enhancing the effect of feature fusion and being able to utilize multi-scale fea-
tures more effectively, respectively. More CNN-based improvements continue to
advance the field [2,9,8]. However, CNNs are struggling to model global depen-
dencies, resulting in suboptimal performance.

With the emergence and development of Transformer [18], related research
has received attention. Att-Unet [13] effectively meets the needs of organ seg-
mentation by introducing Attention Gates, which enable the network to auto-
matically focus on the target region while suppressing irrelevant background
information. TransUNet [5] and Swin-Unet [4] further applied Transformer to
medical segmentation and achieved remarkable results. The attention mecha-
nism can effectively compensate for the disadvantage of CNNs. Also, the work
of combining CNNs and MLP has had remarkable results [17,11].

The Wavelet Transform has also given rise to a number of results in medi-
cal image segmentation. Integration of wavelet transform and converter modules
into a modified U-Net architecture significantly improves the accuracy and model
robustness of nasopharyngeal cancer image segmentation [20]. Spectral U-Net
employs DTCWT and iDTCWT for down-sampling and up-sampling, respec-
tively [14]. Wavelet transform is further applied to modify pooling methods [6].
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Fig. 1. Visualization of deep low-frequency feature information. Each level contains
one low-frequency and three high-frequency wavelet subbands.
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However, existing methods have demonstrated insufficient attention to low-
frequency information in the images and do not further mine and utilize the
low-frequency information. Fig. 1 visualizes the potential feature information
embedded in low-frequency images. Low-frequency feature information mainly
contains information about the global context and spatial structure of an image.
In medical image segmentation, this information helps the model to understand
the overall shape, location, and spatial relationship of organs or tissues, thus pro-
viding important contextual clues for the segmentation task. Furthermore, in the
process of image downsampling, high-frequency information is easily lost, result-
ing in blurred boundaries. The retention and utilization of low-frequency feature
information can reduce this loss of boundary information and thus improve the
segmentation accuracy. Moreover, low-frequency information is relatively less
sensitive to noise, so in medical image segmentation, utilizing low-frequency
information can enhance the robustness of the model to noise. In conclusion,
exploring in depth and utilizing this information wisely can be of immense help
in medical image segmentation tasks.

In this work, we notice the above problem and, inspired by Wavelet Convo-
lutions [7], we propose an Image Multi-Frequency Information Extraction (IM-
FIE) block. This block combines the advantages of standard convolution and
WTConv, which can fully exploit and utilize low-frequency feature information
to achieve more accurate medical image segmentation.

Our contributions can be summarized as follows: (1) We propose UWT-Net
model that verifies the importance of image low-frequency feature information
for medical image segmentation. (2) We design an Image Multi-Frequency Fea-
ture Information Extraction (IMFIE) block that can effectively extract image
features at different frequencies, rationally utilizing the image low-frequency fea-
ture information that people overlook. (3) Experiments demonstrate that UWT-
Net achieves state-of-the-art performance, with multiple sizes of models to meet
different clinical needs.

2 Method

Fig. 2 illustrates UWT-Net’s structure, which employs an encoder-decoder archi-
tecture centered on the IMFIE block. In the encoder, the IMFIE block extracts
features and reduces resolution by half, while in the decoder, it restores resolu-
tion by doubling it. Feature connections between the encoder and decoder enable
feature stitching, enhancing the model’s performance.

2.1 Wavelet Convolutions

Wavelet Convolutions(WTConv) employ the Haar WT because it is efficient and
straightforward [7]. The 2D WTConv uses four sets of filters to perform deep
convolution:
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Fig. 2. Overview of UWT-Net. (a) IFMIE block, which contains Low-frequency Ex-
traction (LFE) and High and Low Frequency Fusion (HLFF); (b) LFE mainly consists
of Wavelet Convolutions, BatchNorm, and LeakyReLU; (¢) HLFF is performed by
standard convolution, BatchNorm, and LeakyReLU.

Note that Fyp, Fyr, and Frg are a set of high-pass filters, and Fpp, is a low-
pass filter. After the convolution process, the output of each channel has four
channels, and the spatial feature dimensions in these four channels are halved.

[Now, N, Now, Nop] = Conv ([Faa, Far, Froa, Fro], N), (2)

where Ny g, Ny, Nig are N’s horizontal, vertical, and diagonal high-frequency
components, while Ny, is its low-frequency component. Since Fyy, Fur, Fry,
Fr; form an orthonormal basis, the transposed convolution can realize the In-
verse Wavelet Transform (IWT):

N = CO’n’U—t?“aTLSpOSGd([FHH,FHL,FLH,FLL] 5 [NHH;NHL,NLHaNLL]) . (3)

The cascade wavelet decomposition is then given by recursively decomposing the
low-frequency component, which increases the frequency resolution and decreases
the spatial resolution of the lower frequencies.

i i i i i—1
Niri Nits Nigp Niy = W (NV). (4)

where N S)L) = N and i is the current level. The Convolution in the Wavelet
Domain is implemented as follows: first, using the Wavelet Transform (WT)
to filter and downscale the input lower- and higher-frequency content. Then,
a small-kernel depth-wise convolution is performed on the different frequency
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maps, and finally, using the Inverse Wavelet Transform (IWT) to construct the
output.
M = IWT(Conv(W,WT(N))). (5)

N is the input tensor, and W is the weight tensor of a k x k depth-wise kernel
with four times as many input channels as V.

Next, take the WT-level=1 combined operation as an example, and increase
it further using the same cascade principle from Eq.(5). The process is given by:

N N = wr (VYY) (6)
My M) = Cono (WO, (NP V(D)) (7)

where N S)L) is the input of the layer, and N g)represents all three high-frequency
maps of level ¢ described in Section 2.1.

Since the WT and its inverse are linear operations, we can combine the
outputs of the different frequencies in the following way:

LO = 1w (M{} + L6, M) (8)

Results in the summation of the different levels’ convolutions, where L(?) is the
aggregated outputs from level ¢ onward. These two outputs of different-sized
convolutions are summed as the output.

2.2 UWT-Net Architecture

IMFIE Each block is constructed of the components as follows: a Wavelet Con-
volution layer (WTConv), a standard convolution layer (Conv), a batch normal-
ization layer (BN), and a LeakyReLU activation function(LR). Formally, given
an image I € RHo*WoxCo The output of each IMFIE block can be elaborated
as follows:

O = LR(BN(WTConuv(I))), 9)

0, = LR(BN (Conv(0))), (10)

after IMFIE block, O, € RH'*W'%Cr Where C, is determined by the scale of
the model, with the specific parameters set in Section 3.3.

UWT-Net Encoder In the encoder, the image data is downsampled by Max-
pool (MP) after IMFIE to achieve feature resolution halving:

E, =LR(MP(IMFIE(E,;_1))). (11)
Bottleneck One standard convolution layer is used to construct the bottleneck

to learn the deep feature representation. In the bottleneck, the feature dimension
and resolution are kept unchanged.
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UWT-Net Decoder the feature data E! at layer 7 in the encoder is spliced
with the feature data D/ in the decoder in the channel dimension, after IMFIE
and Upsample(US), to realize the doubling of the feature resolution and halving
of the number of channels:

D, = Cat(E.,D.), (12)
D,_, = LR(US(IMFIE(D,))). (13)

The final segmentation map can be derived from the output feature maps
Dy € RHoxWoxCy gt layer-0, where Cy is the number of semantic categories
and T denotes the ground-truth segmentation. As a result, the segmentation
loss can be:

Lseg = CE(T,UWT — Net(I)), (14)

where CE denotes the pixel-wise cross-entropy loss. Overall, such a network
design can effectively make up for the weakening of low-frequency information
by standard convolution while inheriting the advantages of U-Net. By fusing the
low-frequency and high-frequency information, the model can better balance
the global structure and local details. The increase of receptive field brought
by IMFIE can further improve the feature extraction ability and generalization
ability of the model, which enhances the performance of the model.

3 Experiment

3.1 Dataset and Implementation Details

To validate the effectiveness, robustness, and generalizability of the proposed
model, we conducted experiments on three publicly available datasets: BUSI [1],
GlaS [16], and CVC-ClinicDB [3]. For a fair comparison, we use the same exper-
imental setup as prior works [10].

The experiments were run using Pytorch on NVIDIA A100-PCIE-40GB GPU.
UWT-Net was trained with an Adam optimizer with a learning rate of 1le-3, and
we used a cosine annealing learning rate scheduler with a minimum learning rate
of le-4. The loss function was a combination of binary cross entropy (BCE) and
dice loss. We trained the model for 400 epochs in total. We use various metrics
such as IoU and F1 Score to compare the output segmentation images both qual-
itatively and quantitatively. To account for the limited data size of the datasets,
we repeated this process three times and reported the average and standard de-
viation of the results [10]. For all three datasets, we only applied vanilla data
augmentations, including random rotation and flipping, and the batch size was
set to 8. We randomly split each dataset into 80% training and 20% validation
subsets. None of the experiments used any pre-trained weights or post-processing
methods.
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Table 1. Performance comparison of various methods on BUSI, GlaS, CVC datasets,
and average results.

BUSI GlaS

Methods ToU F1 ToU F1

U-Net [15](MICCAT'15) 63.00£0.65 77.50£0.55 87.4940.89 93.04%0.61
Att-Unet [13](MIDL’18) 64.1040.38 78.2640.34 88.052+0.17 93.4240.09
U-Net+-+ [21](MICCAT’'18) 57.414+4.77 72.1143.90 87.0740.76 92.9640.44
U-NeXt [17](MICCAD22) = 60.19+0.72 74.94+0.59 84.32+0.34 91.48+0.20
Rolling-UNet [11](AAAT'24) 63.7440.32 77.6440.19 87.7440.18 93.460.10
U-Mamba [12](arXiv'24) 61.8143.24 75.5543.01 87.0140.39 93.0240.24

U-KAN [10](AAAT’25) 63.384+2.83 76.40+£2.90 87.64+0.32 93.3710.16

UWT-Net (Ours) 66.571+0.56 79.65+0.56 88.261+0.29 93.76+0.16
CVC Average

Methods 60 i 16U FT

U-Net [15](MICCAT’15) 83.71+£0.48 91.05+£0.31 78.36+0.67 87.20£0.49
Att-Unet [13](MIDL’18) 83.57+0.54 90.944+0.32 78.60+0.36 87.54+0.25
U-Net++ [21](MICCAT’'18) 84.61+1.47 91.534+0.88 76.36+2.33 85.53+1.74
U-NeXt [17](MICCATI22) 74.254+0.54 84.92+0.35 72.924+0.53 83.78+0.38
Rolling-UNet [11](AAAT’24) 81.314+0.78 89.484+0.49 77.604+0.43 86.86+0.26
U-Mambea [12](arXiv’24) 84.79+0.58 91.63+0.39 77.87+£1.47 86.73£1.25
U-KAN [10](AAATI’25) 85.05+0.563 91.88+0.29 78.69+1.27 87.22£1.15
UWT-Net (Ours) 86.08+2.46 92.461+1.50 80.30+1.10 88.621+0.74

3.2 Performance Comparison

We evaluated our approach against seven baseline methods. These methods in-
clude U-Net [15] and U-Net++ [21], which are based entirely on traditional
convolutional neural network designs, Att-Unet [13], which is based on attention
mechanisms, and the efficient transformer variant, U-Mamba [12]. We also eval-
uated performance against U-NeXt [17], which combines convolution and MLP,
Rolling-UNet [11], and the state-of-the-art, U-KAN [10]. The results in Table 1
indicate that our UWT-Net outperforms all other methods?, which shows that
our method has good generalization ability and robustness.

3.3 Ablation Study

We performed a variety of ablation studies to thoroughly evaluate the proposed
UWT-Net framework and validate the performance under different settings.

Table 2. Performance with and without IMFIE block across different datasets.

BUSI GlaS CvC
IoU F1 IoU F1 1IoU F1
standard convolution 62.28 75.86 83.58 91.37 80.11 88.72
IMFIE 67.14 80.17 88.54 93.92 87.63 93.38

Feature extraction block

3 Results of U-Net-+-+, U-Mamba, and U-KAN are referenced from U-KAN [10]
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Fig. 3. The results of the proposed UWT-Net against all the compared methods over
all the benchmarking datasets.

Table 3. Performance with different WT-levels across average segmentation results.

Average
IoU F1
Level=1 79.564+0.83 88.231+0.54
Level=2 80.301+1.10 88.62+0.74
Level=3 80.024+0.60 88.464+0.36

WT-levels

We replaced the introduced IMFIE block with standard convolution block.
The results in Table 2 highlight the effectiveness of the IMFIE block. This con-
firms the usefulness of low-frequency feature information in medical images for
medical segmentation tasks. The results in Table 3 show that deeper mining of
low-frequency information is more effective in improving segmentation, further
demonstrating the potential value of low-frequency information in images.

Table 4. Performance comparison with different model scales across average segmen-
tation results.

Average Efficiency
ToU F1 Gflops Params(M)
UWT-Net-S 79.384+1.08 88.024+0.75 8.37 7.71

UWT-Net 80.30£1.10 88.624+0.74 32.44 29.54
UWT-Net-L 80.61£0.36 89.034+0.28 127.70  155.56

Model Scale

We performed an ablation study on UWT-Net variants, including UWT-
Net-S ([32, 64, 128, 256, 512| channels) and UWT-Net-L ([128, 256, 512, 1024,
2048| channels), compared to our default model UWT-Net (|64, 128, 256, 512,
1024] channels). Results in Table 4 show that performance improves with model
size. To balance performance and computational cost, we selected the default
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model UWT-Net. Our UWT-Net achieves leading accuracy across all scales,
demonstrating its potential to meet diverse clinical needs.

4 Conclusion

In this study, we explore the potential of underutilized low-frequency features
in medical imaging and propose an innovative block IMFIE and a novel model,
UWT-Net. We perform empirical evaluations of our method under three medi-
cal image segmentation tasks. The results demonstrate that our model can ef-
fectively mine and utilize the overlooked low-frequency feature information and
fuse it with the high-frequency information in medical images, improving seg-
mentation effects. UWT-Net has the potential to be used in a wide range of
medical image segmentation tasks.
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