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Abstract. Early identification of lymphoma patients with poor progno-
sis is crucial to determining personalized treatment plans and improving
prognosis. Currently, commonly used prognostic biomarkers include clin-
ical variables such as International Prognostic Index. Quantitative pa-
rameters based on PET/CT and deep learning methods have also shown
promising results. However, there are still several challenges in PET/CT-
based prognostic studies: heterogeneity in the number and location of
lesions, insufficient representation of lesion features, and the lack of
anatomical context modeling of the lesions. We propose a novel frame-
work named LAMP, with lesion-anatomy context fusion and attention-
based multi-lesion aggregation as its two key components. The former
takes into account information about the surrounding anatomical or-
gans of the lesions to improve their representation. The latter treats
each lesion region as an instance, assigning attention scores that reflect
the contribution of each lesion, and aggregates them accordingly. A to-
tal of 229 lymphoma patients were collected to evaluate our model. In
prediction tasks for progression-free survival and overall survival, the
5-fold cross-validation C-index is 0.791 and 0.828, respectively, outper-
forming existing models based on clinical variables and deep learning.
LAMP has the potential to become a clinical auxiliary tool to differ-
entiate patients with varying risk levels, facilitating the development of
personalized treatment plans.
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1 Introduction

Lymphoma is a malignant neoplasm of the lymphatic system [1,2]. Unlike solid
tumors, lymphoma often spread throughout the entire body. Diffuse large B-cell
lymphoma (DLBCL), the most common type, accounts for 30% of non-Hodgkin’s
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lymphoma [3,4]. Approximately 60% to 80% of patients achieve complete remis-
sion following first-line treatment with R-CHOP [5,6]. However, 20% to 40% may
experience relapse or progression after initial therapy. Early identification of pa-
tients with poor prognosis is crucial, as it enables clinicians to avoid potentially
ineffective therapy and timely adjust in treatment strategy [7,8,9].

Currently, the primary prognostic marker for DLBCL is the International
Prognostic Index (IPI) and its variants [10,11]. IPI has long been the corner-
stone for risk stratification in newly diagnosed DLBCL patients. However, IPI is
predominantly based on clinical factors, overlooking tumor heterogeneity among
individuals. Furthermore, with the development of new therapies, IPI has be-
come increasingly inadequate to meet current clinical needs. As an essential
clinical imaging tool for DLBCL prognosis, 18F-FDG PET/CT provides a non-
invasive method to assess tumor metabolism and capture tumor heterogeneity
from a macro perspective. Prognostic biomarkers derived from PET/CT, such
as metabolic tumor volume, and total lesion glycolysis, have shown promising
results [14,15,16,17]. However, these metabolic parameters primarily rely on sim-
ple features, such as standard uptake value (SUV) and lesion volume, without
fully capturing the complexity of tumor characteristics.

In addition to PET/CT-based quantitative parameters specifically designed
for lymphoma, many other methods have been explored for prognosis and di-
agnosis. A common approach is radiomics feature extraction from regions of
interest (ROIs) via manual or semi-automatic segmentation [18,19,20,12,13].
However, delineating ROIs is time-consuming, and general-purpose radiomics
features may fail to provide specific and sufficient feature representation of lym-
phoma lesion regions. Recently, the use of deep learning techniques for PET/CT
image analysis has grown [21,22,23]. However, these approaches of cropping fixed
organ regions limit its application in diseases like lymphoma, where lesions are
scattered in various anatomical regions, with heterogeneous lesion numbers, lo-
cations, and sizes across patients. Some researchers have attempted to apply the
aforementioned traditional methods to lymphoma [24,25,26]. Meanwhile, Liu et
al. [27] employed multi-task learning by integrating segmentation and progno-
sis prediction within a unified framework. However, they resampled whole-body
PET/CT to a fixed-size input, which cannot adapt to varying lesion locations
and sizes. Graph-based approaches [28,29] provide a novel perspective for ana-
lyzing DLBCL. In these methods, each lesion is treated as a node of a graph,
with radiomics features extracted as the attributes of each node. Graph attention
mechanisms are then employed to model the interactions between lesions. How-
ever, these methods mainly focus on local lesion features while neglecting crucial
spatial context, including lesion distribution and its anatomical correlation with
surrounding organs.

For DLBCL, PET/CT-based prognostic assessment still presents several chal-
lenges: Heterogeneity in lesion number and location. Unlike solid tumors,
where the ROI of a specific lesion/organ can be cropped for analysis, DLBCL
lesions are dispersed across different regions and their size varies, making it dif-
ficult to define a standardized ROI. The inherent characteristic of lymphoma
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necessitates a more flexible approach to analysis. Insufficient representation
of lesion regions. Radiomics features lack specificity in representing lesion re-
gions, while whole-image-based deep learning methods usually focus on dominant
lesions and may overlook small metastatic lesions. The strategy of extracting
features from each lesion region separately and then aggregating them (usually
through average pooling) also requires further optimization. Lack of modeling
the anatomical context of lesions. For example, extranodal involvement in
organs like the liver and marrow in DLBCL is typically associated with poorer
prognosis [30], but current methods cannot explicitly model the anatomical con-
text of lesions.

To address the aforementioned challenges, this paper proposes a model for
Lymphoma using Anatomical context to lesions and Multi-lesion aggregation for
Prognosis (LAMP). This approach aims to enhance the accuracy of prognosis
by effectively extracting and integrating features from multiple lesions while
considering the anatomy of the lesions. The contributions of this work are as
follows:

• We use attention-based multi-lesion aggregation to solve the issue of hetero-
geneous lesion distribution. The learned attention score is interpretable and
can show how each lesion location contributes to prognosis prediction.

• We characterize the interaction between lesions and anatomical structures to
enhance the anatomical context information of each lesion, thereby improv-
ing the representation of the lesion in its spatial and functional environment,
which contributes to more accurate prognosis prediction.

• Extensive validation demonstrates that our approach outperforms existing
prognosis models. Both quantitative evaluations and qualitative analyses
confirmed the advantages of the proposed method.

2 Method

The overview of the proposed framework is presented in Fig. 1. For PET/CT-
based prognostic prediction in lymphoma, we implement a comprehensive com-
putational pipeline comprising three stages. Initially, a multimodal segmentation
network is employed to achieve voxel-level lesion delineation, meanwhile gener-
ating high-dimensional feature maps that maintain spatial correspondence with
the original imaging data. Subsequently, whole-body anatomical segmentation
is obtained on CT volumes to derive organ masks, enabling lesion-anatomy con-
text fusion through an attention-based feature interaction mechanism. Finally,
multi-lesion aggregation is implemented to integrate features across distributed
lesion regions, incorporating both local lesion characteristics and contextual or-
gan information for precise prognostic stratification. We denote the N training
data as D = {Xi

CT, X
i
PET, C

i, Si}Ni=1, where Xi
CT, and Xi

PET denote the input
CT image and PET image, Ci and Si denote censorship status and survival
time. Now we will delve into further details.
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Fig. 1. Overview architecture of our proposed LAMP model.

2.1 Lesion Segmentation and Feature Extraction

Based on the nnUNet [31] framework, we designed a multimodal segmentation
network that integrates PET and CT images. This network consists of two en-
coders with shared weights, each inputting either XCT or XPET. Following the
encoders, three distinct decoders are introduced to process the feature repre-
sentations from XCT, XPET, and the fusion of XCT and XPET features. Each
decoder serves a distinct purpose: one extracts anatomical information from CT,
another captures metabolic information from PET, and the third enables a deep
interaction between the PET and CT information. Each decoder predicts the
lesion masks separately. Finally, a pixel-wise weight map is computed to fuse the
three probability maps adaptively and generate the final lesion mask. This de-
sign combines PET and CT in both feature and decision levels. On our DLBCL
dataset of 229 cases under five-fold cross-validation, this lesion segmentation
network achieved a Dice coefficient of 0.9199, a false positive volume (FPV) of
3.4940, and a false negative volume (FNV) of 2.0300. For lesion-level detection,
it achieved a precision of 0.8931 and recall of 0.8991, significantly outperforming
the plain nnUNet. It provides a solid foundation for our subsequent analysis.

To accurately differentiate lesions from normal tissues in PET/CT, a segmen-
tation network needs to comprehensively encode each lesion’s local appearance
and global anatomical information. Therefore, the feature map of the segmen-
tation network should also be valuable for downstream tasks, such as prog-
nosis. Based on this assumption, we extracted feature maps with the same
spatial dimensions as the input images from the final block of each decoder
branch in the aforementioned segmentation network, and then pool lesion fea-
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tures from them. Formally, let Li = {li1, li2, · · · , liiJ} ∈ RHi×W i×Di

represents the
lesion regions predicted by the segmentation network for the i-th patient, and
{f i

ct ∈ R32×Hi×W i×Di

, f i
pet ∈ R32×Hi×W i×Di

, f i
pet/ct ∈ R64×Hi×W i×Di} denote

the multimodal feature set, where iJ is the overall number of lesions for the i-th
patient and Hi,W i,Di are the height, width, and depth of Xi

CT and Xi
PET. The

features of the j-th lesion on the i-th patient can be represented as:

f i
ij = Concat

[
f i
pet/ct ⊕ liij , f

i
pet ⊕ liij , f

i
ct ⊕ liij

]
(1)

where ⊕ means average pooling within the lesion mask.

2.2 Lesion-Anatomy Context Fusion

DLBCL may not only occur in lymph nodes, but also involve extranodal organs,
with extranodal involvement often being associated with the poor prognosis of
DLBCL. We aim to explore the relationship between prognosis and lesion in-
volvement in extranodal organs by Lesion-Anatomy Context Fusion (LACF).
Specifically, we characterize extranodal involvement by assessing the similarity
between the features of the lesion regions and the features of the organ regions.
This allows us to capture the degree of organ involvement of each lesion. Then,
we weight and aggregate these organ region features to enrich the characteriza-
tion and representation of each lesion region. This approach not only enhances
the lesion feature’s anatomical and metabolic profiles but also incorporates cru-
cial information regarding the organ context, providing a more comprehensive
understanding of the disease’s progression and prognosis.

First, we use TotalSegmentator [32] to segment major anatomical structures
Si = {si1, si2, · · · , siK} on the CT images (The regions belonging to the same
anatomical structure on the same side will be merged, reducing the number
of labels from 117 to 71.). Following the same feature extraction method as
described for the lesion regions, we extract the feature representation for each
anatomical organ.

f i
sk

= Concat
[
f i
pet/ct ⊕ sik, f

i
pet ⊕ sik, f

i
ct ⊕ sik

]
(2)

where f i
sk

stands for the features extracted from the sk-th anatomical organs
of the i-th patient. Next, we employ the attention mechanism to perform the
association analysis between the lesion region features and the anatomical organs
features. We use the features of the lesion region f i

L ∈ RiJ×128 as query Q, the
anatomical organs’ feature representation f i

S ∈ RK×128 as key K and value V :

hi
L = Attention (Q,K, V )

= Attention
(
f i
LWq, f

i
SWk, f

i
SWv

)
= softmax

(
(f i

LWq)(f
i
SWk)

T

√
dk

)
f i
SWv.

(3)

The attention mechanism calculates the similarity between the query and key, al-
lowing the model to focus on the most relevant anatomical features that interact
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with the lesion. This enables the model to establish a more precise correlation
between the lesion’s characteristics and the surrounding anatomical context,
thus improving the overall lesion representation and enhancing the prediction of
prognosis. After that, f i

ij
and the ij-th row from hi

L are concatenated to get the
anatomy-enhanced lesion feature

ziij = Concat
[
f i
ij ,

(
hi
L

)
ij

]
. (4)

2.3 Attention-Based Multi-Lesion Aggregation

DLBCL presents unique challenges due to its heterogeneous anatomical distribu-
tion and variable number of lesions across patients. Conventional methodologies
employed fixed-size whole-image input paradigms or naive average pooling of
all lesion features. They are unable to adaptively process lesion regions with
varying anatomical locations and pathological significance. To overcome these
limitations, we propose a novel solution by reformulating the aggregation of the
lesion feature as an attention-based multi-lesion aggregation (ABMLA) problem
using gated attention mechanisms.

P i =

iJ∑
j=1

aiijz
i
ij , aiij =

exp
{
wT

(
tanh(V ziij

T
)⊕ sigm(Uziij

T
)
)}

iJ∑
j=1

exp
{
wT

(
tanh(V ziij

T
)⊕ sigm(Uziij

T
)
)} (5)

where aiij is the attention score learned by self-attention layers with parameters
U ,V ,and w. Through that, the relative contribution of individual lesion regions
to the predictive outcome could be assessed. P i will be input into the linear layer
to obtain the final survival risk score. NLL (negative log-likelihood) survival loss
is leveraged to train the model [33].

3 Experiments

Data Collection. To evaluate the performance of our method, 229 pre-treatment
whole-body PET/CT image pairs from patients with DLBCL are collected, with
prognostic information available for 195 patients. This study focuses on two main
outcomes: progression-free survival (PFS) and overall survival (OS). Compared
to OS, PFS is more critical, as it is of primary concern to clinicians due to its
direct relevance to disease progression in patients. Multiple preprocessing steps
are applied to the PET/CT image pairs for model training to ensure proper
alignment and standardization, including standardized uptake values conversion,
registering the CT images to the PET images, and z-score normalization.
Implementation and Evaluation. Since the major focus of this paper is prog-
nosis instead of lesion segmentation, we will mainly introduce the prognosis al-
gorithm in this section. We used the Adam optimizer with an initial learning
rate of 0.0001 to train our model. We utilized a batch size of 1 with a gradi-
ent accumulation step of 32 due to nonuniform lesion numbers across patients.
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Table 1. Comparison results using C-index and Time-AUC metrics under five-fold
cross-validation.

Methods PFS OS

C-index(↑) 1y AUC(↑) 2y AUC(↑) C-index(↑) 1y AUC(↑) 2y AUC(↑)

IPI 0.7140.007 0.7550.005 0.7580.004 0.7490.014 0.7220.025 0.7850.016

Ann Arbor 0.6320.001 0.6670.000 0.6690.007 0.6670.003 0.6650.016 0.6800.005

Meta. Param.† 0.7050.006 0.7340.012 0.7360.007 0.7660.018 0.7910.046 0.7950.018

Meta. Param.⋆ 0.7240.004 0.7660.003 0.7560.008 0.7870.006 0.8250.021 0.8300.012

Radiomics [18] 0.7540.006 0.8000.001 0.7920.011 0.7710.014 0.7500.032 0.8060.018

Guo2021 [25] 0.7780.004 0.8160.002 0.8010.008 0.8010.002 0.7900.007 0.8220.003

Liu2022 [27] 0.7190.001 0.7180.011 0.7080.002 0.7970.003 0.8070.009 0.8070.002

Thiery2025 [29] 0.7580.003 0.8390.010 0.7820.005 0.8090.001 0.8200.001 0.8430.002

LAMP (ours) 0.7910.002 0.8440.002 0.8230.004 0.8280.001 0.7820.013 0.8630.004

∗ 1y AUC and 2y AUC refer to the Time-AUC at the 1-year and 2-year time points. The
metabolic parameters are computed based on manual † and automatic segmentation⋆.
The larger numbers within each cell in the table represent the mean values, while the
smaller numbers denote the standard deviations.

Two metrics, the time-dependent area under the receiver operating characteristic
curve (Time-AUC) and the concordance index (C-index), are used to evaluate
the prognosis performance. To ensure data integrity and prevent leakage, we ap-
plied the same five-fold cross-validation split for both the segmentation network
and the prognosis network training. To extract feature maps with the same spa-
tial dimensions as the input images, we implemented patch-wise training and
inference during the segmentation network training.
Method Comparison. To evaluate the performance of the proposed model, we
compared it against four categories of baselines: (1) Widely-used clinical prog-
nosis indices, including IPI and Ann Arbor staging (Ann Arbor) [10,11]; (2)
Metabolic parameters (Meta. Param.) [34] extracted from segmentation masks,
including those derived from both manual and automatic segmentation methods;
(3) End-to-end whole image-based models, such as Guo2021 [25],Liu2022 [27];
and (4) Graph Convolutional Networks (GCNs) [29]. As shown in Table 1, the
performance of the proposed model outperforms the currently used prognostic
clinical indices and metabolic parameters. The C-index for the proposed model
shows an improvement of over 9% and 5% for PFS and OS, respectively, com-
pared to the best-performing model. This demonstrates the superior predictive
power of our model in both endpoints. For Guo2021 [25] and Liu2022 [27], the
constraint of a fixed input size may hinder model performance by limiting its
ability to capture variations in lesion size and distribution. Moreover, jointly
performing segmentation and prognosis prediction within a single model [27] in-
troduces challenges in task balancing, potentially leading to suboptimal learning
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Table 2. Ablation studies under five-fold cross-validation.

Methods PFS OS

C-index(↑) 1y AUC(↑) 2y AUC(↑) C-index(↑) 1y AUC(↑) 2y AUC(↑)

Baseline 0.7500.003 0.8160.004 0.7750.003 0.7940.008 0.8440.015 0.8220.011

w/ ABMLA 0.7710.002 0.8020.005 0.7770.003 0.8000.003 0.7240.016 0.8270.006

w/ LACF 0.7650.001 0.8410.002 0.7960.001 0.8130.008 0.7950.028 0.8420.011

Full model 0.7910.002 0.8440.002 0.8230.004 0.8280.001 0.7820.013 0.8630.004

∗ The larger numbers within each cell in the table represent the mean values, while the
smaller numbers denote the standard deviations.

of both objectives. While Thiery2025 [29] incorporate inter-lesional propaga-
tion relationships, GCN lacks the integration of perilesional anatomical context,
which may contribute to unfavorable performance. The last, the Kaplan-Meier
curves presented in Fig. 2. A and 2. B demonstrates a statistically significant
distinction (p ≤ 0.05) between high-risk and low-risk patients. This finding fur-
ther validates the model’s discriminative capacity and underscores its potential
clinical translational value.

Fig. 2. (A) and (B) are the Kaplan-Meier (KM) curves for PFS and OS prognosis.
(C) presents mapping the attention scores ai

ij over the lesion regions. (D) shows the
features of key anatomical organs by t-SNE.

Ablation Study. Table 2 highlights two key advantages of our proposed model:
ABMLA and LACF, both jointly contribute to performance improvement com-
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pared with baselines (all features are aggregated by averaging). Additionally,
in Fig. 2. C, we visualized the attention scores learned through ABMLA. A
higher attention score is assigned to the lesion regions within the bone marrow
and spleen, as involvements of these organs typically indicate a poor prognosis.
The t-SNE scatter map in Fig. 2. D indicates that features extracted from the
segmentation network can differentiate key organs, which is beneficial for the
prognosis task via our LACF strategy.

4 Conclusion

For malignancies like lymphoma, which have multiple, variable lesion regions
and challenges in feature representation and aggregation, we propose a PET/CT-
based model LAMP that combines attention-based multi-lesion aggregation with
contextual interaction with surrounding anatomical structures. Our approach is
comprehensively evaluated on PFS and OS prognosis using multiple metrics.
The results demonstrate the superiority of our model both quantitatively and
qualitatively, highlighting its potential to serve as an auxiliary tool to assist
clinicians in treatment planning.
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