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Abstract. The groundbreaking development of spatial transcriptomics
(ST) enables researchers to map gene expression across tissues with spa-
tial precision. However, current next-generation sequencing methods,
which theoretically cover the entire transcriptome, face limitations in
resolving spatial gene expression at high resolution. The recently in-
troduced Visium HD technology offers a balance between sequencing
depth and spatial resolution, but its complex sample preparation and
high cost limit its widespread adoption. To address these challenges, we
introduce HISTEX, a multimodal fusion approach that leverages a bidi-
rectional cross-attention mechanism and a general-purpose foundation
model. HISTEX integrates spot-based ST data with histology images to
predict super-resolution (SR) spatial gene expression. Experimental eval-
uations demonstrate that HISTEX outperforms state-of-the-art methods
in accurately predicting SR gene expression across diverse datasets from
multiple platforms. Moreover, experimental validation underscores HIS-
TEX’s potential to generate new biological insights. It enhances spatial
patterns, enriches biologically significant pathways, and facilitates the
SR annotation of tissue structures. These findings highlight HISTEX as
a powerful tool for advancing ST research. Our source code is available
at: https://github.com/wenwenmin/HISTEX.

Keywords: Spatial Transcriptomics · Histology Image · Super Resolu-
tion · Bidirectional Cross-Attention · Multiple Instance Learning.

1 Introduction

Spatial transcriptomics (ST) has emerged as a groundbreaking technology that
enables comprehensive in situ analysis of gene expression profiles within intact
tissue architectures, offering unprecedented capabilities for investigating cellu-
lar interactions and spatial heterogeneity [22]. While single-cell sequencing is
valuable for analyzing the immune cell heterogeneity of disease progression and
immune responses, it lacks spatial context, presenting significant limitations in
understanding cell-cell interactions and tissue structure [27]. The unique advan-
tages of ST technology have propelled its successful application across diverse
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Fig. 1. (A) The overview of HISTEX. (B) The network architecture of bidirectional
cross-attention for multimodal fusion. (C) A multi-instance learning framework for
model optimization. (D) Biological insights discovered by HISTEX.

biological disciplines, including neuroscience [15], developmental biology [4], and
infection and immunity research [24].

Nevertheless, current mainstream ST technologies struggle to balance the
spatial resolution of gene expression and the sequencing depth required for com-
prehensive transcriptome profiling [25]. Imaging-based methodologies, while ca-
pable of achieving single-cell or subcellular resolution in gene expression localiza-
tion, are inherently limited in their transcriptomic scope, typically detecting only
a restricted panel of tens to hundreds of target genes [17]. Conversely, NGS-based
platforms offer whole-transcriptome analysis and demonstrate superior scalabil-
ity for large-scale investigations, yet their spatial resolution is constrained by
barcode array density limitations [20]. Due to the excessively large spot size and
the gaps between spots, a significant amount of gene information is lost across
tissue regions, with the observed gene expression representing the aggregated sig-
nals from several or even dozens of cells [9,19]. The limited resolution hampers
the ability to resolve fine-grained cellular interactions and spatial heterogene-
ity, diminishing the reliability of ST data for critical applications such as tissue
microenvironment analysis and cellular behavior studies.

Several methods have been developed to address the low-resolution (LR)
imperfection of NGS-based approaches. STAGE [10] uses a supervised auto-
encoder to model the continuity of gene expression in space and generate high-
density profiles, but it can only predict the unmeasured gap regions between
spots and cannot achieve finer-grained super-resolution generation. Other SR
methods [2,28,7,26] achieve the prediction of more fine-grained SR profiles, but
they rely solely on histological features without integrating histology and LR
spot-based ST data at the input level. As a result, the outcomes of these methods
are heavily influenced by morphological similarities across different regions in
histological images, leading to deviations from the ground truth.
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To address this issue, we develop HISTEX, a multimodal fusion method that
accurately generates super-resolution (SR) gene expression profiles by deeply
integrating histology images and LR ST data. The main contributions are
summarized as follows: First, we introduce linear interpolation and a pre-
trained foundation model to extract high-density gene expression and informa-
tive histological features, maximizing the use of available data. Second, to deeply
integrate gene expression and histological features, we introduce the bidirectional
cross-attention (BCA), which adaptively aggregates them from multiple perspec-
tives to obtain comprehensive multimodal feature maps, avoiding the limitations
of other algorithms that rely on a single data source. Third, Due to the lack of
SR-level labels, with each spot containing dozens of SR pixels, we introduce the
concept of multi-instance learning (MIL) to optimize the model.

2 Methods

The proposed HISTEX operates in three phases (Fig. 1): (1) Enhancement
and UNI: extraction of high-density gene expression and histological features
through linear interpolation and pre-trained foundation model. (2) BCA mech-
anism: fusion of multimodal representations through a BCA mechanism, en-
abling deep interaction between transcriptomic and histological domains. (3)
MIL mechanism: robust generation of SR gene profiles through a MIL frame-
work. Through the aforementioned core framework, HISTEX can effectively inte-
grate histology and spot-based ST data to generate SR gene expression profiles.

2.1 Multimodal Information Enhancement and Extraction

Gene Expression Data Enhancement. The large gaps between spots in ST
data lead to substantial gene information loss, disrupting the continuity and sta-
tistical significance of gene expression patterns. Therefore, the existing transcrip-
tomic signals were first employed as prior knowledge for predicting high-density
gene expression profiles. Let Mg of shape (h,w) be the g-th gene expression
matrix, linear interpolation is applied to generate a high-resolution profile:

M ′
g (i, g) =

1

2

(
Mg(i, ⌊j/2⌋) +Mg(i, ⌈j/2⌉)

)
, (1)

M ′′
g (i, j) =

1

2

(
M ′

g(⌊i/2⌋ , j) +M ′
g(⌈i/2⌉ , j)

)
, (2)

where M ′
g and M ′′

g have shapes (2h,w) and (2h, 2w). In addition, we introduce
the binary mask matrix B, where Bi,j = 1 denotes a valid spot and Bi,j = 0 a
non-spot region. Then final Mhr

g can be obtained:

Mhr
g = M ′′

g ⊙B. (3)

Histological Feature Extraction. Given the outstanding performance of
large pre-trained general-purpose foundation models in clinical tasks [3,12], we
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use UNI [3] as the backbone feature extractor. Firstly, the size of histology images
were standardized such that each pixel corresponds to 0.5 µm, and the height
and width of the entire image are divisible by 224 to accommodate the input
requirements of UNI. Let H =

{
Hij | Hij ∈ R224×224

}
be the entire histology

image, where i = 1, 2, · · · , H
224 and j = 1, 2, · · · , W

224 . UNI partitions each sample
into non-overlapping patches of size 16 × 16, where each patch is mapped to a
1024-dimensional feature vector. Then the entire histological feature map Y is
extracted after each sub-image Hi,j is fed into UNI as an input sample:

Yij = UNI (Hij) ∈ R14×14×1024, (4)

Y = [Yij ]
H/224,W/224
i=1,j=1 ∈ RM/16×N/16×1024, (5)

where Y is formed by concatenating all Yij according to their original physical
positions. We treat each 1024-dimensional vector in Y as a superpixel.

2.2 BCA mechanism for Multimodal Data Fusion

The architecture of cross-attention has shown strong performance in other mul-
timodal tasks [21,11]. We propose a novel idea for the deep integration of gene
expression Mhr and histological features Y (refer to Fig. 1B). We illustrate the
entire process of multimodal fusion by introducing the basic unit, the Cross-
Attention (CA) block, and the BCA layer. We achieve multimodal fusion by
stacking two BCA layers, which consists of two parallel CA blocks and one sub-
sequent CA block, where the outputs of the former serve as the output of the
latter.

CA Block. The framework of CA block is similar to Multi-head Self-Attention
mechanism [23]. The CA block consists of m heads, with the queries Q, keys K,
and values V for the i-th head computed as linear transformations of the input
representations as follows:

Qi = QWQ
i ,Ki = KWK

i , Vi = VWV
i , (6)

where the first dimensions of WQ, WK , and WV are determined by the different
input data, and the second dimensions represent the embedding length d, which
defaults to 512. The operation of the CA block can be described as follows:

hi = A (Qi,Ki, Vi) = softmax
(
QiK

T
i√

dh

)
Vi,

h = h1 ⊕ h2 ⊕ · · ·hm,

CA (Q,K, V ) = hW,

(7)

where ⊕ represents concatenation of heads.
BCA Layer. Let Hj ∈ Rn1,1024 denote the histological feature Y , where

n1 represents the number of superpixel spanned by spot, Gj ∈ Rn2,g denote
the gene expression data obtained from Mhr, where g represents the number of
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Fig. 2. Visualization of several disease-related genes with different spatial patterns
in MBHD data for comparison between HISTEX and other state-of-the-art (SOTA)
methods.

genes, and Gj is selected based on the Euclidean distance to the closest Hj . The
process of three CA blocks working collaboratively is as follows:

Zj1 = CA (Gj , Hj , Hj) ,

Zj2 = CA (Hj , Gj , Gj) ,

Zj3 = CA (Zj2, Zj1, Zj1) .

(8)

Next, the output of the final CA block is passed through the FNN and a residual
connection [6], forming the output of the BCA layer:

BCA (Gj , Hj) = FFN (Zj3) + Zj3. (9)

HISTEX consists of two connected BCA layers, where the output of the first
layer replaces Hj and serves as part of the input to the second layer. After the
above process, stacking with Hj results in the multimodal feature map:

Lj = BCA
(
Gj ,BCA (Gj , Hj)

)
+Hj , (10)

where Lj has a shape of (n1, 1024+d), and the final L is formed by reconstructing
Lj into a 3D structure with shape (M/16, N/16, 1024 + d).

2.3 Model Optimization by MIL

HISTEX is trained using the concept of MIL, where each spot represents a bag,
and the superpixels covered by the spot are treated as instances (Fig. 1C). The
instance-level gene expression are then aggregated to obtain the bag-level gene
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Table 1. Numerical evaluation experiments comparing HISTEX with baselines.

Methods MBHD HBCHD HBC_1 HBC_2 HBC_3
RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM

STAGE [10] 0.1638 0.3561 0.1950 0.3762 0.1483 0.4565 0.2130 0.4428 0.1648 0.3965
XFuse [2] 0.1236 0.3894 0.1439 0.4268 0.1836 0.4114 0.1495 0.3834 0.1536 0.3452
TESLA [7] 0.1004 0.6136 0.1264 0.6237 0.0984 0.5138 0.0862 0.5483 0.0943 0.6476
iStar [28] 0.0797 0.6934 0.1183 0.6976 0.0817 0.5851 0.0672 0.6839 0.0746 0.6298
scstGCN [26] 0.0542 0.7409 0.0617 0.7462 0.0601 0.7134 0.0591 0.7461 0.0653 0.6834
Ours 0.0292 0.8443 0.0352 0.8273 0.0365 0.8234 0.0349 0.8493 0.0382 0.7957

expression. Let S be the number of spots in Mhr, ys ∈ R1,g be the gene expression
at spot s, Ls ∈ Rn,1024+d be the set of superpixels covered by spot s, ec ∈ R1,n

be the unit vector used for aggregation operations. Then the loss function is:

L =
S∑

s=1

(
ys − ecFFN (Ls)

)2

. (11)

3 Experimental Results

3.1 Dataset and Implementation

Dataset Preprocessing. Since the spot-based ST data lacks SR gene expres-
sion as ground truth, we conducted a comparative numerical evaluation of HIS-
TEX and other baselines on multiple data from the Visium HD and Xenium
platforms. For the Visium HD data, we performed aggregation on the raw data
(with bins of 8×8 µm2) based on the distribution patterns and sizes of the
spots in the Visium data, in order to generate pseudo-Visium as inputs. For the
Xenium data, we first constructed a rectangular grid with each cell measuring
8×8 µm2. Based on the overlap area between each grid cell and the cells in the
Xenium data, we reshaped the raw data into a regular gene expression as the
ground truth. Next we generated pseudo-Visium data following a procedure sim-
ilar to that for the Visium HD. In our experiments, we predicted the top 1,000
highly variable genes (HVGs) in each Visium HD dataset and all genes in the
Xenium dataset (313, 288, and 377 genes for the three sections, respectively).

Dataset Source. The Xenium human breast cancer (HBC) datasets with
three sections (denoted as HBC_1, HBC_2, and HBC_3) can be accessed at ht
tps://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-
breast [8]. The Visium HD human breast cancer (HBCHD) and mouse brain
(MBHD) are available at https://www.10xgenomics.com/datasets/visium-hd-c
ytassist-gene-expression-human-breast-cancer-fresh-frozen and https://www.10
xgenomics.com/datasets/visium-hd-cytassist-gene-expression-mouse-brain-fresh
-frozen [13], respectively. The HER2-positive breast cancer (HER2ST) datasets
can be found at https://github.com/almaan/her2st.

Implementation Details. All experiments were conducted on an NVIDIA
RTX 3090 GPU, using the Pytorch 2.1.1 and Python 3.11.5 environment, with
a total of 500 training epochs and a learning rate of 0.0001, employing the L1

https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast
https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast
https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast
https://www.10xgenomics.com/datasets/visium-hd-cytassist-gene-expression-human-breast-cancer-fresh-frozen
https://www.10xgenomics.com/datasets/visium-hd-cytassist-gene-expression-human-breast-cancer-fresh-frozen
https://www.10xgenomics.com/datasets/visium-hd-cytassist-gene-expression-mouse-brain-fresh-frozen
https://www.10xgenomics.com/datasets/visium-hd-cytassist-gene-expression-mouse-brain-fresh-frozen
https://www.10xgenomics.com/datasets/visium-hd-cytassist-gene-expression-mouse-brain-fresh-frozen
https://github.com/almaan/her2st
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Fig. 4. The outstanding SR tissue annotation capability of HISTEX.

loss and the Adam optimizer. For bidirectional cross-attention mechanism, we
performed deep information fusion by selecting 6 spots for each superpixel, based
on their Euclidean distance metric.

3.2 Results

Evaluation of Generation Performance. Numerical evaluation experiments
were conducted on two Visium HD datasets (HBCHD and MBHD), and a Xe-
nium dataset (HBC). We used pseudo-Visium data and histology images as the
input to HISTEX and conducted a comprehensive comparison of its SR gene ex-
pression prediction performance with other baselines, evaluated using the root
mean square error (RMSE) and structural similarity index measure (SSIM) met-
rics (refer to Section 3.1). Before computing the evaluation metrics, we normal-
ized the intensities of both the ground truth and the predicted super-resolution
gene expression maps to the range of [0, 1]. The results show that HISTEX
achieved the predictions closest to the ground truth across all datasets, outper-
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Table 2. Comparison of different model variants in ablation study.

Methods MBHD HBCHD HBC_1 HBC_2 HBC_3
RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM

w/o His-Fea 0.0836 0.6446 0.1368 0.6534 0.0946 0.5639 0.0835 0.6793 0.0872 0.6016
w/o BCA 0.0586 0.7291 0.0628 0.7226 0.0634 0.6794 0.0637 0.7139 0.0715 0.6792
w/o Ge-En 0.0397 0.8255 0.0484 0.7856 0.0513 0.6667 0.0495 0.0713 0.0548 0.6758
Ours 0.0292 0.8443 0.0352 0.8273 0.0365 0.8234 0.0349 0.8493 0.0382 0.7957

forming all baselines (Table 1). Compared to SOTA method, HISTEX shows
improvements ranging from 39.2% to 46.1% in RMSE and 10.8% to 16.4% in
SSIM across different datasets. Next, we selected several disease-related genes
with distinct spatial patterns for visualization to compare the performance of
HISTEX with SOTA methods (Fig. 2). Although all methods can infer the SR
gene expression, the baselines exhibit a significant deviation from the ground
truth. Both globally and locally, HISTEX captures the true spatial patterns
more accurately, with the distribution of numerical values being closer to the
ground truth.

Insights from Downstream Analysis. We analyzed the capabilities of
HISTEX in discovering new biological insights using HER2ST dataset (Fig. 3A).
The original data, limited by low resolution, disrupts the continuity of spatial
patterns. After enhancement with HISTEX, following the Sepal-based criterion
for ranking gene spatial patterns [1], the spatial patterns of certain disease-
related genes are significantly increased, exhibiting more statistically meaningful
patterns (Fig. 3B). Additionally, 154 GO:BP terms were detected in the SR
data generated by HISTEX but not enriched in the original data [18] (Fig.
3C). Furthermore, among the top 10 significant terms, several are related to
malignancies [16,14], providing new insights into the identification of disease
mechanisms (Fig. 3D). Finally, we evaluated the ability of HISTEX in spatial
domain identification. Traditional spatial clustering methods are limited to tissue
annotation in LR scenarios. In contrast, after improving the resolution of gene
expression, HISTEX leverages the K-means [5] to perform tissue annotation
under SR conditions. The results show that HISTEX effectively identifies regions
such as Breast glands and In situ cancer, outperforming other methods (Fig. 4).

Ablation Study. We evaluated the contribution of several key components
in HISTEX. 1) w/o His-Fea: Relying solely on the output of the BCA module
for prediction, without utilizing histological features. 2) w/o BCA: Completely
removing the multimodal fusion module (BCA) and relying solely on histological
features for prediction. 3) w/o Ge-En: Removing the Gene Expression Enhance-
ment module and directly using the original LR data as input to the BCA
module. The results show that the performance of all modules is worse than
HISTEX in multiple datasets, which means that these modules have improved
the performance of HISTEX. The results show that the performance of all mod-
els is inferior to HISTEX across multiple datasets, indicating that each of these
modules contributes to enhancing the performance of HISTEX.
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4 Conclusion

In this study, we present HISTEX, a novel multimodal information fusion model
designed to predict SR spatial gene expression. The first step of HISTEX is to
generate high-density gene expression and rich histological features. The second
step involves deep multimodal information fusion through BCA mechanism pro-
posed in this paper. Finally, SR spatial gene expression profiles are predicted by
HISTEX trained with a MIL framework. Numerical evaluation experiments and
spatial visualization results on multiple datasets demonstrate that HISTEX out-
performs other SOTA methods. Moreover, HISTEX can also offer new insights
in biomedical research, such as gene expression pattern enhancement, enrich-
ment of biologically significant pathways, and SR annotation of tissue structure,
facilitating a deeper understanding of biological processes for researchers.
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