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Abstract. Traditional federated learning relies on fully labeled datasets
in each medical institution, which is impractical in real-world clinical
scenarios. Federated Active Learning (FAL) addresses this by selecting
a few informative samples for labeling, but it faces challenges such as
domain shift across institutions. Besides, existing FAL methods rely on
single-round model knowledge to estimate prediction-level uncertainty,
ignoring uncertainty from features and model evolution during training.
In this work, we propose TM-FAL, a novel framework for federated ac-
tive medical image classification under domain shift. TM-FAL proposes
a new uncertainty by integrating feature differences and prediction confi-
dence from temporal local and global models to capture both local-global
differences and the inherent complexity of images. Additionally, we use
the prediction of the global model as pseudo labels to group images to
mitigate class imbalance caused by uncertainty-based selection. Exper-
iments on two medical image classification datasets demonstrate that
TM-FAL outperforms various state-of-the-art methods.

Keywords: Federated learning - Active learning - Medical image clas-
sification.

1 Introduction

Federated learning has shown success in a wide range of healthcare applica-
tions [8,24,29,6,30,27] by enabling multiple medical institutions to collabora-
tively train a global model using their datasets in a privacy-preserving manner.
However, it typically requires all institutions to have a fully labeled dataset,
which does not reflect real-world clinical scenarios. The high cost of labeling
medical data makes it difficult for physicians to label all available data, leaving
each institution with only a small amount of labeled data and a large amount
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Fig.1: (a) Accuracy (%) of low- and high-uncertainty samples versus commu-
nication rounds. The T-SNE [15] visualization of (b) TM-FAL without the
pseudo-labeling-based grouping and (¢) TM-FAL, where x denotes the selected
samples, and different classes (0-7) are represented by different colors. Without
the pseudo-labeling-based grouping, data selection bias towards two difficult-to-
classify categories (2 and 4).

of unlabeled data. Active Learning [17,22,23] (AL) provides an effective solution
to this challenge by letting the model, trained on the labeled dataset, select a
small set of representative data from the unlabled dataset for labeling, thereby
minimizing annotation costs while achieving performance comparable to that of
full data labeling. Thus, the key lies in designing an effective query strategy to
select the most informative data.

Unlike AL in centralized scenarios, Federated Active Learning [12,26,1] (FAL)
poses new challenges due to involving multiple institutions. In federated medi-
cal scenarios, data from different medical institutions, such as medical images,
are typically acquired using different devices, resulting in domain shift across
datasets [14,31,11]. As a result, we cannot treat each institution as a subtask of
FAL, as it would exacerbate the learning biases of local models. When selecting
data, it is crucial to not only consider its contribution to local model optimiza-
tion but also to focus on its potential to improve the generalization of the global
model across diverse institutions.

To address this, recent state-of-the-art FAL methods [4,5] select data by si-
multaneously leveraging both local and global models to estimate uncertainty.
However, we identified two key limitations in these methods. First, they rely
solely on the model’s prediction (classifier output) to estimate uncertainty. While
this captures the difficulty of the data, it does not effectively quantify the local
and global differences. In FAL, it is crucial to select data where local and global
models exhibit significant differences, as these samples are particularly valuable
for improving the generalization of the global model across institutions. As shown
in previous studies [14,31,28], domain shift leads to feature drift across differ-
ent institutions. Consequently, the differences between local and global models
are more pronounced in feature representation (encoder output). Second, these
methods only use knowledge from a single round of local and global models.
Given the randomness of Stochastic Gradient Descent (SGD), relying on knowl-
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edge from only one-time point (short-term) may fail to effectively capture the
inherent complexity of data, which is a long-term attribute.

Based on the above insights, we propose Temporal Model-based Federated
Active Learning, termed TM-FAL, for medical image classification. Specifically,
we propose a novel local-global temporal uncertainty-based sampling strategy,
inspired by the cognitive principle of the model: during the learning process,
models typically classify simpler samples in the early stages and progressively
handle more difficult samples in later stages [2]. As a result, the model’s output
varies across different learning phases, particularly for more challenging samples
(see Fig. 1 (a)). By leveraging this, TM-FAL utilizes both the feature differences
and prediction confidence of temporal local and global models to capture the
local-global differences as well as the inherent complexity of the data. However,
we observed that relying solely on this uncertainty-based strategy can lead to a
bias in data selection towards more difficult-to-classify categories (see Fig. 1 (b)),
resulting in class imbalance. To address this, we introduce a pseudo-labeling-
based grouping strategy that maintains class diversity (see Fig. 1 (¢)) by using
the global model’s output as pseudo labels. Experimental results show that TM-
FAL significantly outperforms several state-of-the-art methods on two medical
image classification datasets.

2 Preliminary

Problem Statement. Suppose there are K hospitals, communicating through
a trusted central server. Each hospital k € [K] contains a small labeled dataset

L, = {Xi,Yi}?:ﬁl and a large unlabeled dataset Uy = {Xi}?:gl, where X
is the image, Y € [C] represents the corresponding label, and C' is the total
number of classes. Our goal is to train a classification network: f = go h, where
g : X — Z is a feature encoder that extracts the latent features Z from the
image, h : Z — Y is a classifier that makes predictions, and w = wg, o wy,
represents their parameters.

Federated Active Learning. FAL consists of two phases: the training phase
and the data selection phase. First, we use the initial labeled datasets {Lg}le,
where Lg = Ly, to train the network, and the training phase follows the standard
FL framework [16]. At each communication round ¢ € [T], the local models are
optimized by minimizing each local empirical risk ¢, and the global model is
updated by averaging the local updates as:

K
0=yl (wh), and wk = Z"ykuﬂf€7 (1)

k=1
where v, = #ﬁvﬂ“’ wl, and w}, represent the parameters of the global and
local models, respectively. After the training phase, the well-trained models are
used to select By images from the unlabeled dataset and annotate them, thus
constructing a labeled query dataset Qf = {X, Yi}fi’“l, where By, < n¥. The
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Fig. 2: Illustration of TM-FAL. For each hospital k, TM-FAL constructs a
selector pool by selecting models from the local and global model pools using in-
terval sampling, and estimates the uncertainty by leveraging the knowledge from
all selectors. To address the class imbalance issue introduced by the uncertainty-
based strategy, TM-FAL further groups the images using the predictions of the
global model as pseudo-labels.

labeled dataset is then updated to L§ = L,e;l U Qy,, and the unlabeled dataset
is updated to U§ = szl \ Q- Next, the updated labeled datasets of all insti-
tutions are used to initiate a new training phase. The above FAL process can
be repeated multiple epochs (e € [E]), gradually improving the model’s per-
formance on LY, bringing it closer to the performance achieved with the fully
labeled set Ly UUY.

3 Methodology

To tackle the FAL challenge under domain shift, we propose a novel method,
termed TM-FAL. Fig. 2 illustrates the data selection phase of our method, which
consists of two key modules: i) local-global temporal uncertainty-based sampling
and ii) pseudo-labeling-based grouping. We omit the training phase and assume
it has already been completed on the initial labeled datasets {Lk}ff:l. Each
hospital £ maintains a local model pool {w}wwz, ceey wf} and a global model
pool {wg, w%, ..., wk}, both trained using Eq. (1). For simplicity, we only show
the process of a single FAL epoch, but this can be easily extended to multiple
FAL epochs. We present the whole algorithm in Alg. 1.

3.1 Local-Global Temporal Uncertainty-Based Sampling

We introduce local-global temporal uncertainty as a novel metric for data selec-
tion. Unlike existing methods that rely solely on local and global models from
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a single round, our approach leverages the knowledge from models at multiple
different rounds. Besides, we estimate the uncertainty of images in both the fea-
ture encoding and prediction processes to simultaneously capture the local-global
differences and inherent complexity. The detailed process is as follows.
Selector Pool. Since models from adjacent rounds tend to exhibit high similar-
ity, directly utilizing local and global models from all rounds would diminish the
temporal differences and increase computational overhead. We observed that
temporal differences are more pronounced in the early rounds, as the models
have not yet converged, and decrease in the later rounds as the models converge.
In this way, for each hospital k, we select the first 2V local and global models at
intervals of S training rounds from the local and global model pools to construct
a selector pool as:

@k:{w,ﬁ,wé,wf“,wé‘“,...,wfy,wg}, (2)

where M = (N—1)S+1 < T'. The selector pool effectively reduces computational
overhead and enhances temporal differences.
Uncertainty Estimation. Following, we can use the constructed selector pool
to estimate the uncertainty of images. Given an image X € R™#*W  +ith size
H x W and r channels, we first estimate the uncertainty of the feature encoding
process by computing the variance of features across all selectors, as follows:

D
1 , , ,
b =1 > Var({Z'}N)aeR,  and Z'=g(0;,X) eR*P, (3)
d=1

where D is the dimension of the feature and @Z)g is the parameters of i-th
selector’s feature encoder. , effectively captures the local and global feature
differences caused by domain shift. Next, we further estimate the uncertainty of
the prediction process as:

. L ‘
5, = > and p= max(ﬁ;f( kX)) €10,1]. (4)

where @Z denotes the parameters of i-th selector, and p is the confidence score of
the prediction by the ensemble of all selectors. For images with higher confidence,
their prediction process exhibits lower uncertainty. d; reflects the long-term pre-
diction uncertainty of both local and global models, effectively capturing the
inherent complexity of images. Our proposed uncertainty is composed of the
above two uncertainties as:

% ZdD:I V‘“"({Zi 222[1)01

6 =10,0p = , .
T max(5k 2 F(05, X))

(5)

U
Finally, we can estimate the uncertainty of all images {J;};*, based on Eq. (5)
and select the top By images with the highest uncertainty for annotation as the
query dataset.
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Algorithm 1: Data selection of TM-FAL for hospital k

Input: Unlabeled dataset Uy, local model pool {w,lw wi, ey wkT} and global model pool
{wg, ws, ..., wL} trained on initial labeled datasets {Lj}X_,, number of classes
C, hyper-parameters S, N, and By,

Output: Query dataset Q)

M+« (N-1)S+1

O +— {wllc,wlcﬁwf+l,wg+l, .. ‘,wlly,wg{

for Image X; € Uy do

6; < Eq. (5) // Estimate uncertainty for each image

Y, « argmaz(f(wk, X;))
Put (X, d;) into group I'y

end

C

Q). < Select By, images sequentially from {I'.};_, with higher uncertainty

Return Q,,

© X N ow A ® N R

3.2 Pseudo-Labeling-Based Grouping

Since images from difficult-to-classify classes typically exhibit higher inherent
complexity than those from easier-to-classify classes, the above methods may
introduce a bias towards these difficult classes, potentially exacerbating class
imbalance. An effective selection strategy should consider both the uncertainty
and diversity of images [13]. To address this, we further utilize the predictions
of the global model as pseudo-labels to group images. Given that the global
model has been trained on data from diverse hospitals, it demonstrates more
generalized performance compared to the local model. The image group for each
class ¢ € [C] can be written as:

o= {(X,,86)[V, =c}’,, Y, =argmaz(f(w], X,)). (6)

Following, we sequentially sample from these C' groups according to the uncer-
tainty, until we have selected By images.

4 Experiments

4.1 Experimental Setup

Datasets. We evaluated our approach on two real-world multi-institutional med-
ical image classification benchmarks, i.e., Fed-ISIC and Fed-Camelyon, both
designed for FL scenarios. Fed-ISIC [5,21] is a skin lesion classification dataset
that contains 8 categories, distributed across four different institutions with
{12413, 3954, 3363, 2259} images. Fed-Camelyon [5,21,11] is a binary clas-
sification dataset for breast cancer histology, distributed across five independent
medical institutions. The dataset contains {59436, 34904, 85054, 129838, 146722}
image patches. For Fed-ISIC, we use EfficientNet-B0 [20] as the classification net-
work and evaluate using balanced multi-class accuracy. For Fed-Camelyon, we
use DenseNet-121 [9] as the classification network and employ accuracy as the
evaluation metric. Both EfficientNet-BO and DenseNet-121 are initialized with
pre-trained weights from ImageNet [7].
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Table 1: Quantitative comparison using balanced multi-class accuracy (%)
on Fed-ISIC and accuracy (%) on Fed-Camelyon. We report the mean4std of
the results from three independent trials across four FAL epochs (#E2—#E5).

Best results are marked in red.

Fed-ISIC Fed-Camelyon

Method | #E2 #E3 #E4 #E5 #E2 #E3 #E4 #E5
Random [61.5941.45 64.904+1.53 65.53+1.31 64.994+1.43(|94.82+0.30 95.40+0.24 96.0240.12 96.3440.07
Entropy |63.2110 50 64.8611 09 66.3510 14 65.57+1.02|95.0340.01 96.0840.23 96.52+0 20 96.88+0 18
TOD 58.104+1.95 66.564+0.36 66.26+1.22 65.5140.75(93.17+0.87 95.27+0.07 96.07+0.09 96.5040.12
Gradnorm|63.23 11 .25 66.144+1 51 67.0241.00 66.5240.75(94.404+0.06 94.8540.21 95.64+0.04 95.89+0.13
CoreSet 62.5341.50 65.914¢.78 66.6140.20 66.844+0.21(93.9040.25 93.954+0.31 94.944+0.09 95.85+0.13
BADGE 59.4510.67 64.2710.74 66.7310.46 64.7141.07]94.9710.41 95.6210.11 96.2510.12 96.3710.10
LoGo 62.3642.30 66.4310.69 66.1212 61 66.2610.50|94.9810.07 95.6040.15 96.2040.26 96.51 10 05
KAFAL  [62.34.40.30 65.3641.15 66.2641.12 66.2411.31|95.06£0.17 96.0840.07 96.7640.11 96.9240.04
FEAL 65.1840.41 67.77+1.31 68.4141 01 68.4640.37(95.79+0.68 96.544+0.40 97.041+0.28 97.2940.35

- Louz [64.2841 64 66.69+0.05 67.3241.16 67.4040.22(95.2440.03 96.21+0.04 96.80+0.07 97.264+0.06
TM-FAL |67.8010 00 69.5720. 85 701010 36 70.46 11 20|96.0240 30 97132037 97-8920. 34 98.1320 21

Task Setting. Following [5], for both Fed-ISIC and Fed-Camelyon, we randomly
select 500 images from the training dataset of each institution as the initial
labeled dataset, with the remaining images serving as the unlabeled dataset. We
train the local and global models on the labeled datasets and use them to select
images from the unlabeled datasets. The number of selected images, By, for each
FAL epoch is set to 500. After each FAL epoch, we perform a new training phase
using updated label datasets. Next, we evaluate the new global model on the test
dataset of each institution and record the average metrics across all institutions.
In this way, we can effectively evaluate the effectiveness of FAL.

Baselines. We evaluate our method against nine baselines, categorized into two
groups: (1) Centralized AL methods adapted to FL: @ Random sampling, &
Entropy [19] ® TOD [10] @ Gradnorm [25] ® CoreSet [18] ® BADGE |[3];
(2) State-of-the-art FAL methods: @ LoGo [12] ® KAFAL [4] © FEAL [5], all
of which leverage the knowledge from both local and global models. For a fair
comparison, we enhance the first group (@-®) by employing an ensemble of local
and global models as the selector, consistent with the FAL approaches. Since we
adopted the exact same setup as FEAL [5], we directly report their published
results of all baselines.

Implementation Details. All experiments are implemented using PyTorch and
conducted on an NVIDIA RTX 4090 GPU with 24GB of memory. Following [5],
we perform a total of E =5 FAL epochs, with each training phase consisting of
100 communication rounds. The network is optimized using the Adam optimizer
with a learning rate of 5e-4 and a batch size of 16. Weight decay is set to 5e-
4 for Fed-ISIC and le-5 for Fed-Camelyon. We treat the process of randomly
selecting images to form the initial labeled datasets as the first FAL epoch and
report the performance in the subsequent four FAL epochs (#E2 — #E5).
Additionally, the total selected data of five FAL epochs does not exceed 85% of
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the total training dataset. We conduct three independent trials with different
random seeds and report the mean and standard deviation (std) of our results.

4.2 Comparison with State-of-the-Arts

Table 1 summarizes the quantitative comparison results across all evaluated
methods on both Fed-ISIC and Fed-Camelyon datasets. Our proposed TM-FAL
demonstrates consistent performance superiority over all baselines across all FAL
epochs on both datasets. Specifically, on Fed-ISIC, TM-FAL yields a signif-
icant performance improvement over FEAL, the best baseline, from 65.18%
to 67.80% (#E2). This strongly demonstrates TM-FAL’s effectiveness in ad-
dressing FAL challenges under domain shift, as it simultaneously captures both
local-global differences and inherent complexity of images. It should be noted
that the original FEAL implementation incorporates an auxiliary loss function
during training. To ensure a fair comparison of core algorithm capabilities, we
conducted additional experiments with FEAL’s auxiliary loss removed. The re-
sults clearly demonstrate a performance degradation in FEAL on both datasets
when deprived of this auxiliary component, further validating the superiority of
TM-FAL’s data selection strategy.

4.3 Analytical Studies

Hyper-parameters Analysis. To deeply
investigate the impact of two key hyper-
parameters, we evaluate the average perfor- -
mance of TM-FAL over four FAL epochs for
different values of S{1, 2, 3, 4} and N{5, 10, o
15, 20}, as shown in Fig. 3. By utilizing the
sampling interval .S, we can increase the tem-
poral differences among the selected models,
thereby reducing the total number of models
N required. For instance, a configuration with )
(S = 2, N = 10) achieves comparable per- F}g. 3: Results of TM-FAL with
formance to that of (S = 1, N = 20). This different 5 and NV on Fed-ISIC.
demonstrates that a larger sampling interval

effectively balances temporal differences and computational efficiency. The best
performance of 69.48% is achieved when (S = 3, N = 10).

Ablation Studies. To gain

a deeper understanding of our

method, we further explore the Table 2: Ablation studies for different
two key modules, id.e., Local- modules on Fed-ISIC.

69.0
68.5
68.0
67.5
67.0
66.5

66.0

Global Temporal Uncertainty- Nethod] #E2 ZE3 74 ZE5

based Sampling (LGTUS) and m 62.7511.32 65.5940.61 65.6341.20 65.8610.79
Pseudo-Labeling-based Grouping 2 66.43+1.16 68.6610.42 69.21+0.45 69.6320.30
(PLG) By thiS, we built up two Ours 67.80+0.90 69.5740.85 70.1010.36 70.46£1.20

baselines: @ M1: TM-FAL without
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LGTUS module, and @ M2: TM-FAL without PLG module. Table 2 shows the
ablation experiment results on Fed-ISIC dataset. Compared to TM-FAL, both M1
and M2 show significant performance degradation across different FAL epochs,
demonstrating the effectiveness of the two key modules. Additionally, M2 out-
performs M1, indicating that the LGTUS module plays a more crucial role in
improving the method’s performance, as it effectively measures the importance
of the data.

5 Conclusion

In this work, we presented an effective solution, TM-FAL, for federated active
medical image classification under domain shift by leveraging the knowledge
from temporal local and global models to estimate image uncertainty. Addition-
ally, we introduced a pseudo-labeling-based grouping strategy to mitigate class
imbalance caused by uncertainty-based sampling. Experimental results on two
medical image classification datasets demonstrate that TM-FAL significantly
outperforms various state-of-the-art methods.
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