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Abstract. Automated radiology report generation holds significant re-
search value as it has the potential to alleviate the heavy burden of
report writing for radiologists. Previous studies have incorporated diag-
nostic information through multi-label classification to assist in report
generation. However, these methods treate visual and diagnostic infor-
mation equally, which overlooks the difference in the importance of both
when generating different types of words. This can lead to errors in report
generation. We propose the Image-Tag Adapter framework (ITAdaptor),
which dynamically balances the contributions of visual and diagnos-
tic information in the decoder, ensuring both are fully utilized during
the report generation process. The model introduces two novel modules:
Cross-Modal Knowledge Enhancement (CMKE) and Image-Tag Adapter
(ITA). CMKE leverages pre-trained CLIP to retrieve similar reports from
a database, assisting in the diagnosis of query images by providing rel-
evant disease information. ITA adaptively fuses the visual information
from the input images with the diagnostic information from the disease
tags to generate more accurate reports. For training, we propose a strat-
egy combining reinforcement learning and knowledge distillation, opti-
mizing iteratively to extract knowledge into the ITAdaptor. Extensive
comparative experiments on the IU-Xray and MIMIC-CXR benchmark
datasets demonstrate the effectiveness of our proposed approach.

Keywords: Report Generation - Attention - Adapter - Knowledge Dis-
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1 Introduction

Automated radiology report generation can significantly improve physician pro-
ductivity and has therefore received increasing research attention. Mainstream
approaches typically employ encoder-decoder architectures [17, 18, 26]. Early re-
search used convolutional neural networks (CNNs) to extract visual features [24,
19]. With the advent of Transformer model [23], many studies have leveraged
various attention mechanisms to enhance performance [9,30]. In recent years,
several methods, such as template retrieval structures [5,13], memory-driven
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networks [4, 3], and knowledge-aware modules [11, 15, 28], have shown promising
results in report generation. Additionally, some studies have adopted multi-task
learning, utilizing radiograph classification information to assist in report gen-
eration [20, 22].

Despite some progress, challenges remain for methods aimed at extracting
radiological knowledge to assist in report generation. First, features extracted
by the encoder from different modalities exist in distinct representation spaces,
leading to inconsistent representations of image and text features with the same
underlying semantics. Recent work [8] has somewhat alleviated this issue by
distilling clinical information into the decoder. Secondly, in the decoder, it is un-
reasonable to treat visual and diagnostic information equally when generating
different types of words by directly using disease classification results to assist in
generation. For instance, diagnostic information plays a more crucial role when
generating descriptions of abnormalities, such as pleural effusion and scoliosis.

Motivated by the limitations mentioned above, we propose ITAdaptor to en-
hance the utilization of radiographs and diagnostic knowledge, thereby improving
automated report generation. Specifically, based on the encoder-decoder archi-
tecture, ITAdaptor incorporates a disease classification branch. During report
generation, the diagnostic results from this branch are converted into disease tags
to explicitly guide the generation process. To further improve diagnostic accu-
racy, we design Cross-Modal Knowledge Enhancement (CMKE), which leverages
a pre-trained CLIP model to retrieve similar reports from the database, assist-
ing in the diagnosis of query images. Additionally, we introduce the Image-Tag
Adapter (ITA), which dynamically adjusts the weight of visual and diagnos-
tic information to ensure that both advantages are fully utilized during report
generation. Our main contributions are summarized as follows:

— We introduce a cross-modal knowledge enhancement that improves the rep-
resentational capability of disease classification features by retrieving the
most similar features, while also incorporating medical text knowledge into
the report generation process, similar to how doctors consult relevant clinical
records.

— We propose the Image-Tag Adapter, which utilizes visual and diagnostic in-
formation in the decoder to guide the report generation process, adaptively
balancing the contributions of both based on the type of words being gener-
ated.

— To better align visual and textual features for generating radiology reports,
we propose a three-stage training strategy that combines reinforcement learn-
ing and knowledge distillation, which utilizes iterative optimization to distill
global knowledge into our ITAdaptor.

2 Method

In this section, the proposed model ITAdaptor is introduced. As shown in Fig.
1, the model includes two new modules: RKE and ITA. In addition, the disease
classification branch serves as a disease tag generator to guide report generation.
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Fig. 1. ITAdaptor consists of three components: Cross-Modal Knowledge Enhance-
ment (CMKE), Image-Tag Adapter (ITA) and Disease Tag Generator (i.e., Disease
Classification Branch).

2.1 Cross-Modal Knowledge Enhancement

Diagnosing based solely on medical images may be suboptimal, as radiologists
often have access to additional documentation for reference, such as patient
information and diagnostic databases. Inspired by this, we leverage the report
database from the training data to enhance the representational capacity of
visual features and obtain more robust disease classification features.

We first utilize the CLIP model [6] pretrained on the MIMIC training set to
perform cross-modal retrieval, aiming to retrieve the top— k most relevant report
embeddings Z;,,—j, for the input image. Given the input image I and the report
library R = {R1, Ra,...Rn}, where R; represents the i-th radiology report and
N is the number of reports, CLIP acts as an encoder that maps I and R; to
D-dimensional embeddings:

v = Eimage (I) y e = Etezt (Rz) (1>

Then we apply L2 normalization to standardize the embeddings and compute the
cosine similarity between them to retrieve the most relevant report embeddings:

T
. Rk
sim (v,7;) = ——— (2)
el sl
Ztop—k = arg max'P~* sim (v, ;) (3)

r, ER’/
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where R'= {ry, ra, ..., rn } is the set of report embeddings.

For the output features V' of the visual encoder, we use average pooling to
further aggregate features to obtain the feature V,. We introduce multi-head
cross attention (M HCA) to effectively integrate visual features with retrieved
medical knowledge, which not only enhances cross-modal interaction but also
yields more robust features for disease classification.

Vea=MHCA (Vy, Ziop—i) (4)

then we follow [22] to further predict the disease tags T for the input image.
Specifically, we feed Vo4 into a multi-label classification network, which is pre-
trained as a multi-label classification task on the downstream dataset to generate
the distribution of all predefined disease tags. Finally, the most likely disease tags
Diop—n = {dy,da,...,dN}€E RNVXP are used as the disease tags for the current
input image.

2.2 Image-Tag Adapter

Decoder at each time step ¢, to generate each word y; in the final report, our
model first takes as input the embedding of the current input word x; = w; + e;
(w; : word embedding, and e; : fixed position embedding) through multi-head
self-attention (M HA) to obtain the current hidden state: hy = M H A(x¢, 21.¢)
€ RP. Then, visual cross attention and tag cross attention are introduced to
capture salient visual information v; € R” and salient diagnostic information
di€ RP:

Vi = Visual Attention (he, [V;Veoal) = MHCA (he, [V; Veal) (5)

Dy = Tag Attention (hy, Diop—n) = MHCA (hy, Diop—n) (6)

where[;] stands for concatenation operation.

When the decoder generates descriptions related to abnormalities and their
severity, D; is more important because it contains clear abnormal information.
In contrast, when describing normal conditions as well as the location and shape
of abnormalities, V; is more critical because it encompasses the overall visual
information. Therefore, we introduce an adaptive fusion gate to dynamically
adjust the balance between the two parts:

e =0 (F(Dy) — F (V) (7)

ct =D + (1 — ) Vi (8)

Where o is the sigmoid function, 7, represents the importance of D, compared to
V4, and F denotes the two fully connected layers used as scoring functions to eval-
uate the importance of diagnostic information and visual information. Finally
the ¢; is projected onto the vocabulary distribution through a fully connected
layer and a softmax function.
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2.3 Training Strategy

The entire training process consists of three stages:
First, the ITAdaptor model is pretrained using word level cross entropy loss
L. and binary cross entropy loss L., for multi-label classification:

NT
1
= — Y 1 .
== Lok ) )
[fl = ‘Cce + ‘Cbce (10)

where {p; }is the predicted sequence of word markers and {w;} is the correspond-
ing ground truth report.

Second, inspired by CMM+RL [21], after the model has been trained with
several epochs, the sequence generation is fine-tuned by Reinforcement Learn-
ing, and reinforcement learning loss is defined as: £,; = VgLy = —(r(w) —
b)Vylog (pg(w)), where r(.) refers to the reward function, and b refers to the
reward value, which is obtained from BLEU-4 metric. The training objective of
the current stage is the combination of £ and L,;, with £, and L,; scaled by
factors A\; and Aso:

Lo =ML1+ XLy (11)

Third, we use the models trained in the first and second stages as the stu-
dent and teacher models, respectively, and apply knowledge distillation (KD) to
minimize the difference between their probability distributions for word index ¢
and image I, expressed as: Lk = =+ Zivzl KLIp(c,I)|ps(c,I)], N is the di-
mension of the word space. The final stage of training is the combination of Lo
and Lg,with Lk scaled by factor ~:

L3 :£2+7£KL (12)

Specifically, when the student model performs better than the teacher net-
work in a new epoch, we transfer the weights of the student to the teacher and
iteratively conduct the training of the third stage.

3 Experiments

Datasets and Evaluation Metrics. We evaluate our model on two widely-
used datasets for report generation: IU-Xray [5] and MIMIC-CXR [10]. IU-Xray
dataset, developed by Indiana University, is a dataset containing 7,470 X-ray
images and 3,955 corresponding reports. We follow the established training-
validation-testing splits of previous research [14,2] with a distribution ratio of
7:1: 2. MIMIC-CXR dataset, released by Bethlsrael Deaconess Medical Cen-
ter, is a comprehensive chest X-ray dataset containing 473,057 radiographs and
206,563 corresponding reports. Following previous works [3, 4], we utilize the of-
ficial split, where the training set consists of 368,960 images, the validation set
contains 2,991 images, and the test set contains 5,159 images.
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For both datasets, we used categorical labels from [22] for the classification
task. We assessed the quality of the generated reports using various evaluation
metrics. These include BLEU [5], METEOR [1] and ROUGE-L [12]|. Higher
scores are indicative of superior model performance.

Table 1. Performance comparisons of the proposed ITAdaptor with existing methods
on NLG metrics were conducted using the test sets of the MIMIC-CXR and IU-Xray
datasets. optimal and suboptimal performance is highlighted.

Dataset Methods Venue BL-1 BL-2 BL-3 BL-4 METEOR ROUGE-L
R2Gen EMNLP’20 0.470 0.304 0.219 0.165 - 0.371
R2GenCMN ACL’21 0.475 0.309 0.222 0.170 0.375 0.191

GSKET MedIA’22 0.496 0.327 0.238 0.178 -

[U-Xray M2KT MedIA’2-3 0.497 0.319 0.230 0.174 - 0.399
GMoD MICCAT24 0.530 0.363 0.267 0.203 0.217 0.418
EKAGen CVPR’24 0.526 0.361 0.267 0.203 0.214 0.404
RAMT TMM’24 0.482 0.310 0.221 0.165 0.195 0.377

ITAdaptor Ours 0.536 0.377 0.274 0.206 0.220 0420
R2Gen EMNLP’20  0.353 0.218 0.145 0.103 0.142 0.270
R2GenCMN ACL’21 0.353 0.218 0.148 0.106 0.142 0.278
GSKET MedIA’22 0.363 0.228 0.156 0.115 - 0.284
M2KT  MedIA’23 0.386 0.237 0.157 0.111 0.137 0.274
MIMIC-CXR GMoD MICCAI'24  0.398 0.251 0.172 0.124 0.166 0.286
EKAGen CVPR24 0.419 0.258 0.170 0.119 0.157 0.287
RAMT TMM’24 0.362 0.229 0.157 0.113 0.153 0.284

ITAdaptor Ours 0.411 0.260 0.187 0.141 0.152 0.314

Implementation Details. Our baseline model includes a pre-trained ResNet
101 [7], a 3-layer Transformer encoder, a 3-layer Transformer decoder, and an
additional disease classification branch. the top — N of ITA is 5. The loss scaling
factors A1, Ao, and « are set to 0.01, 0.99, and 0.01, respectively. We use the
AdamW [16] optimizer, with a learning rate of 2 x 10-5 for the Visual Extractor
and 1 x 10-4 for the language generation model. The training batch sizes for
MIMIC-CXR and IU-Xray are set to 32 and 16, respectively. All experiments
are conducted on an RTX 4090 GPU.

4 Analysis

Performance Comparison. We compared our method with several SOTA
methods using the MIMIC-CXR and IU-Xray datasets. The selected comparison
methods include Knowledge-Based methods (GSKET [28], M2KT [27], EKAGen
[2]), the method using graph structures (GMoD [25], RAMT [29] ), and Memory
Driven methods (R2Gen [4], R2GenCMN [3]). As shown in Table 1, our method
achieved state-of-the-art performance on the IU-Xray dataset and competitive
results on the MIMIC-CXR dataset, with scores 1.5% and 1.7% higher than the
suboptimal model on the BL-3 and BL-4 metrics, respectively. This suggests
that our model captures contextual information and word relationships better.
Furthermore, our model outperformed the suboptimal model by 2.4% on the
ROUGE-L metric, demonstrating its superior ability to generate key phrases.
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Table 2. Ablation studies on the proposed Cross-Modal Knowledge Enhancement
(CMKE), Image-Tag Adapter (ITA) and Training Strategy (TS). In TS, RL stands for
reinforcement learning, KD stands for knowledge distillation.

Dataset CMKE ITA TS Metric

RL KD BL-1 BL-2 BL-3 BL-4 METEOR ROUGE-L

X X X X 0348 0.213 0.144 0.102 0.133 0.271
v X X X 0369 0.229 0.156 0.112 0.143 0.284
MIMIC—CXRX v X X 0382 0.241 0.165 0.118 0.148 0.284
v v X X 0395 0.253 0.170 0.125 0.151 0.288
v v v X 0387 0.253 0.181 0.136 0.141 0.294
v v v v 0411 0.260 0.187 0.141 0.152 0.314

Ablation Studies. As shown in Table 2, first, the Base+CMKE showed im-
provements on all metrics, indicating that absorbing medical expertise from simi-
lar cases is beneficial. Second, the Base+ITA achieved more significant enhance-
ments, with increases of 3.4% and 1.6% in BL-1 and BL-4, respectively. This
demonstrates the effectiveness of adaptively determining which information to
rely on when generating words to produce disease-oriented visual features. No-
tably, CMKE can obtain more robust features for classification, resulting in more
accurate disease tags for ITA. When combining CMKE and ITA, performance
further improves.

For RL and KD, the model+RL showed a decrease in BL-1 and METEOR,
while improving by 1.1% in both BL-3 and BL-4. When RL and KD are combined
simultaneously, the model achieves the best overall performance, indicating the
effectiveness of the three-stage training strategy.
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Fig. 2. (a) The impact of the number of iterations in the third stage of training on
IU-Xray. (b) Effect of varying top-k on IU-Xray.
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Additionally, we analyzed the impact of the number of iterations in the third
stage of training on report generation performance on the IU-Xray dataset. Fig.
2 (a) shows that the model performed best after two optimization iterations. We
also examined the effect of different top — k values on report generation perfor-
mance. top — k is a key hyperparameter of the CMKE module that determines
the number of relevant reports retrieved during the current report generation
process. Excessive relevant reports may introduce noise. Fig. 2 (b) shows that
the model achieved peak performance at top — k = 12.

Ground Truth: the heart is normal in size . the mediastinum is unremarkable.the lungs are
clear.

Baseline: the heart size and pulmonary vascularity appear within normal limits.the lungs
are free of focal airspace disease.no pleural effusion or pneumonthorax is seen.

Ours: the heart is normal in size and mediastinum are unremarkable . the lungs are clear.
there is no pneumothorax or pleural effusion .

Ground Truth:the cardiac silhouette and mediastinum size are within normal limits .
there is no pulmonary edema . there is no focal consolidation . there are no xxx of pleural
effusion . there is no evidence of pneumothorax .

Baseline: the heart size and pulmonary vascularity appear within normal limits.the lungs
are free of focal airspace disease .nopleural effusion or pneumothorax is seen.

Ours: the cardiomediastinal silhouette is within normal limits in size and countour.there is
no focal airspace consolidation or effusion or pneumothorax.no pleural effusion. no acute
bony abnormality.

low

Fig. 3. Visualization: the network is highly concerned about this red area, the blue
area that is not concerned. Report: correct descriptions are highlighted in blue, while
incorrect descriptions are shown in red.

Quantitative Analysis. We draw attention maps to explore the regions of the
medical images that the generated reports focus on. Fig. 3 shows that our model
accurately identifies the target areas and produces reports that are closer to the
ground truth. This suggests that the model can reduce the cross-modal gap and
generate reports that are more consistent with the images.

5 Conclusion

This paper proposes ITAdaptor, a novel architecture dedicated to enhancing in-
formation utilization. Our method can dynamically adjust the contributions of
visual information and diagnostic information in report generation based on the
type of generated words, fully leveraging the advantages of both, and combin-
ing the training strategy to iteratively optimize report generation. Significant
improvements across MIMIC-CXR and IU-Xray illustrate the effectiveness and
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generation of our proposed method. Although we have made progress in radiol-
ogy report generation, there are still some limitations. In future work, we will
focus on validating the generalizability and effectiveness of our proposed model
through a real-world pilot study across local hospitals.
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