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Abstract. Vision foundation model, despite strong segmentation capa-
bilities enabled by pretraining on large-scale data, remain underexplored
in specific medical visual concept segmentation tasks. Medical imaging
presents unique challenges: pixel intensity differences between target
regions and surrounding structures are often subtle, and significant vari-
ations in the shape, size, and location of anatomical structures limit
the effectiveness of traditional pixel-similarity-based alignment strategies.
This paper proposes a Deformation-Aware Learning Strategy via Self-
sustaining Feedback Cycle (DSFC) for medical image segmentation. The
framework introduces a dual-deformation perturbation mechanism, com-
bining global gaussian-distributed deformations and target-focused local
deformations, to preserve anatomical patterns while capturing non-rigid
variations. Hard Example Adaptive (HEA) loss is proposed to enhance
training stability and mask accuracy. DSFC establishes a closed-loop train-
ing process, alternately optimizing the segmentation model and destroyer
to improve anatomical understanding. Our extensive experiments on
public datasets with various dimensions, organs demonstrate that DSFC
significantly enhances model performance in fully supervised training
settings without the need for increasing the samples. and its components
are effective. Our code is available at: https://github.com/jaylinio/DSFC.

Keywords: Medical image segmentation · SAM · Deformation aware
augmentation · Foundation models adaptation.

1 Introduction

Pretrained vision foundational models [7, 16, 19, 20, 1] have demonstrated im-
mense potential in medical image segmentation due to their powerful zero-shot
segmentation capabilities. Among them, SAM series [7, 16] excels by achiev-
ing target segmentation without requiring task-specific pretraining, leveraging
user-provided visual prompts such as points, boxes, or masks. This capability
is particularly advantageous in data-scarce medical scenarios. However, when
applied to medical imaging, SAM may yield suboptimal results [24].
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Fig. 1. SAM demonstrates incomplete segmentation even when provided with
correct prompts. From left to right are the original image, the prompt initialized
from GT, zero-shot, one-shot, few-shot, and fully supervised segmentations.

To address the challenges in medical image segmentation, numerous stud-
ies have proposed improvements to SAM, aiming to enhance its segmentation
performance in medical image tasks through few-shot auto-prompting [21, 23,
4, 22], fine-tuning [25, 18, 11, 27], and training framework modification [26, 9, 2].
Although these methods have shown advantages in reducing user intervention
and the number of training samples, as shown in Figure 1, segmentation results
still have deficiencies [12], especially in tasks that require high precision, such as
tumor resectability assessment [13] and neoadjuvant therapy evaluation [6, 14].

To this end, this paper proposes a learning framework called Deformation-
Aware Learning Strategy via Self-sustaining Feedback Cycle (DSFC), which
introduces a perturbation process during adaptation of the foundation model
(e.g., MedSAM-2 [27]). This process generates soft global and target-focused local
deformation disturbance signals, the former is sampled with a gaussian distri-
bution sampled from foreground organs in image, while the latter is generated
by our proposed self-sustaining local destroyer model. Those deformations have
high global and local diversity, and follow the original distribution pattern (i.e.,
the size, shape, related location of organs) of the segmented targets, encourage
model to capture the geometric non-rigid deformation differences among different
patients. In addition, to address the challenge of learning from difficult pixels,
we propose Hard Example Adaptive (HEA) loss function to further stabilize
the training process and improve the completeness and accuracy of the mask
prediction. This forms a closed-loop training process. The refiner (i.e., the seg-
mentation model) and destoryer are optimized alternatley during training, As
the training gradually converges, the base model is able to more accurately
understand the spatial geometric features of real anatomical structures, resulting
in denser masks that are biologically plausible. Experimental results on three
medical datasets demonstrate the superior performance of DSFC in medical
image segmentation tasks, showcasing excellent adaptability and generalizability.
Our core contributions can be summarized as follows:

1. We introduce a deformation-aware destroy process to model geometric defor-
mation differences between patients, enhancing the biological plausibility of
medical image segmentation.

2. We propose to optimize the DSFC framework with a cyclic training strategy,
significantly improving adaptation of foundation model (i.e., MedSAM-2)
without additional samples.
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Fig. 2. Overview of the proposed DSFC pipeline.

3. We extensively evaluate our method on both 2D and 3D public datasets. The
results demonstrate that our method outperforms state-of-the-art (SOTA)
techniques and highlights the effectiveness of its components.

2 Method

The DSFC framework consists of a refiner (e.g., MedSAM-2 [27]), a destroyer
and an alternating training mechanism. The refiner processes images {xn}Nn=1

and prompts {pmtn}Nn=1 to generate coarse predictions {x′
n}Nn=1 and confidence

matrices {cn}Nn=1. These are used by the destroyer to compute spatial discrepan-
cies with ground truths {yn}Nn=1, driving it to learn a dense deformation field
ϕ for self-supervised backpropagation. The destroyer then perturbs the images
and ground truths using ϕ, creating augmented data {xϕ

n}Nn=1 and {yϕn}Nn=1 for
the refiner. This iterative process is stabilized by Hard Example Adaptive (HEA)
loss, forming an end-to-end cyclic training loop.

Refiner The proposed DSFC incorporates MedSAM-2 [27] as the Refiner, an
extended version of SAM2 [16] specifically designed for medical imaging tasks.
The architecture consists of several key modules that work together to achieve
precise segmentation of medical images. First, the Image Encoder (Eimg) encodes
each frame of the medical image xt into a feature embedding ft = Eimg(xt),
providing the foundational features for subsequent processing. Simultaneously,
the Prompt Encoder (Epmt) processes the user-provided prompt pmtt to generate
a corresponding embedding qt = Epmt(pmtt), which guides the execution of the
segmentation task. The Self-Sorting Memory Bank (Msort

t ) dynamically stores
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and updates feature embeddings from previous time steps, ensuring high infor-
mation content and diversity through an update mechanism based on confidence
and dissimilarity. Next, the Memory Attention Mechanism (A) combines the
current frame’s feature embedding ft, the updated memory bank M̃sort

t , and
the prompt embedding qt to generate weighted information through attention
computation. Finally, the Mask Decoder (D) predicts the segmentation mask yt
based on the attention output and produces a segmentation confidence matrix
ct = Dconf(A(ft,M̃sort

t , q1)), where ct represents the category-specific confidence
values of the segmentation mask, providing a quantitative measure of the relia-
bility of the segmentation results. The segmentation process is mathematically
expressed as Eq. 1 follows:

yt = D(A(ft,M̃sort
t , q1)), t = 1, . . . , T

ct = Dconf(A(ft,M̃sort
t , q1)), t = 1, . . . , T

(1)

where ft = Eimg(xt), q1 = Epmt(p1), and M̃sort
t is the resampled feature embed-

ding from the self-sorting memory bank Msort
t . The segmentation confidence

matrix ct is also produced by the mask decoder, which provides a category-wise
confidence value for each predicted segmentation.

Destroyer The Destroyer is composed by a global destroy process and a local
destroy process, the former is sampled with a gaussian distribution sampled
from foreground organs in image, while the latter is generated by our proposed
self-sustaining local destroyer model.

Global destroy process. The goal of global destroy process is to generate a globally
random spatial transform. Specifically, we firstly initial ϕg by assigning its each
position (x, y) a two-dimensional vector ϕg(x, y) = (dx, dy), representing the
displacement at that position. Each component dx and dy of the deformation
field is randomly sampled from a gaussian distribution, as shown in Eq. 2.

dx ∼ Norm(0, σ2
D), dy ∼ Norm(0, σ2

D) (2)

where σD denotes the standard deviation of the gaussian distribution, controlling
the intensity of the deformation field. Notably, to preserve the organ’s spatial
consistency, we compute σD = (σx + σy)/2 from the mask region y

′
.

Then, a gaussian filtering Gσ is adopt to ensure the smoothness of ϕg. Addi-
tionally, to limit the magnitude of the deformation field, the smoothed deformation
field is clipped to a predefined range [−a, a], producing the final deformation
field ϕf

g , as described in Eq. 3.

ϕf
g = Clip(ϕg ∗Gσ,−a, a) (3)

where Clip denotes the clipping function, and a is the predefined range. Finally,
the deformation field ϕf

g is applied to the original image x and the ground truth
label y, yielding the distorted image xϕ

g and the distorted label yϕg .
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Local destroy process. The global destroy process provide a globally destroyed
version of the input data, while the lack of locally variation limiting the per-
formance of the model, which is difficult to simulate by random deformation
field. In this section, we propose to train a local destroyer model, a lightweight
U-shape network to output a local focused deformation field. Since the original
segmentation results usually differ from the annotations only in local areas but are
generally consistent on a global scale (i.e., the size, shape, and relative positions
of organs), we can consider the original segmentation results as new images that
are locally deformed versions of the labels. Thus, we proposed to guide the local
destroyer to learn the deformation between the original segmentation and the
label. Specifically, given the ground truth ys (with standardization) and the
image x as input, the model output a deformation field ϕl and a alpha matte m.
The final deformation field ϕf

l is obtained by multiply the m and ϕl. Following
[8], we use a binary cross entropy loss to supervise the learning of m, formally:

Lpert = − 1

N

N∑
i=1

[ysi log(mi) + (1− ysi ) log(1−mi)] (4)

where N represents the number of pixels, yi is the value of the i-th pixel, and
mi is the value of the i-th pixel, thus enabling self-supervised learning for the
deformation field ϕl. Its gradient jointly optimizes the deformation field, enabling
unsupervised alignment.

Training Strategy The DSFC method enhances training stability through
online augmentation by doubling the size of each batch, which includes both
globally and locally augmented data. During refiner training, the augmentation
probability p is applied per sample within a batch, yielding ⌊N · p⌋ augmented
samples from N total augmentations. The destroyer is thus optimized on a
combined set of original and augmented samples. During training, the destroyer
and refiner are alternately updated in odd and even iterations respectively, while
keeping the other module frozen.

We employ Hard Example Adaptive (HEA) loss helps the model focus on the
hard-to-classify pixels within each mini-batch during training. Hard examples
are pixels where the conditional probability P (c | v) of class c given pixel value v
is below a threshold τ , i.e., P (c | v) < τ . HEA loss further restrict pixels within
the ground truth foreground region, formally as Eq. 5:

LHEA =

V∑
v=1

C∑
c=1

ys · I{P (c | v) < τ} · logP (c | v), (5)

where C is the total number of classes, V is the total number of pixels in a
mini-batch, τ ∈ (0, 1] is the confidence threshold and I{·} is an indicator function
that returns 1 if the condition is true and 0 otherwise. In this paper, we set τ = 0.5
and M = max(ys > 0), where M corresponds to the minimum number of hard-
to-classify pixels used in each mini-batch. The Destroyer D is updated using the
gradient −∆D(Lpert), and the Refiner R is updated using the gradient −∆R(Lseg)
and −∆R(LHEA), Lseg follows the same approach as used in MedSAM2 [27].
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The detailed training procedure of the DSFC method is shown in Algo. 1.

Algorithm 1 DSFC
Require: Coarse predictions {x

′
n}Nn=1, ground truths {yn}Nn=1.

Ensure: Destroyer D aligns y with x
′
; Refiner R predicts x

′
.

1: Augment {yn}Nn=1 to {yϕ
n}Nn samples via Destroyer.

2: Initialize D,R.
3: for each epoch ≤ maximum epoch do
4: for each iteration ≤ maximum iterations do
5: if Destroyer training is true then
6: Sample mini-batches y, x, x

′
from yn, xn, x

′
n.

7: Compute Lpert.
8: Update D

t← −∆D(Lpert) (gradient update).
9: else

10: Load source data (x, y, pmt) and augmented data (xϕ, yϕ, pmtϕ).
11: Compute Lseg and LHEA.
12: Update R

t← −∆R(LHEA) (gradient update).
13: Update R

t← −∆R(Lseg) (gradient update).
14: end if
15: end for
16: end for

3 Experiments

Datasets We conducted multi-organ segmentation experiments on three publicly
available BTCV [3], Synapse [5] and JSRT [17] dataset. The BTCV [3] consists
of 24 training samples and 6 test samples, each with around 130 valid slices, and
features labels for 13 abdominal organs. The Synapse [5] comprises 18 training
samples and 12 test samples, with each sample containing approximately 70 valid
slices, and includes labels for 8 abdominal organs. The JSRT [17] contains 197
training samples and 50 test samples, with each sample having approximately 1
valid slice, and provides labels for 1 chest organ. During the training process, the
resolution for all datasets is standardized to 512 × 512.

Implementation Details The experiments are conducted with PyTorch [15]
using 8 NVIDIA-A800 GPUs. The optimizer employed was AdamW [10] (β1 =
0.9, β2 = 0.999), with a learning rate of 1e-4. We set the warm-up ratio to 0.001
and use the cosine decay schedule after warm-up. The weight decay was set to 0.1.
Following [27], we evaluate the model’s performance using task-specific prompts,
with the prompt types including point, box, and mask.

Comparison with SOTA SAM-based Frameworks The experimental results
demonstrate the superior performance of our proposed method (both 2D and
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Table 1. Quantitative Comparison of Medical Images Segmentation Perfor-
mance. We show the comparison of DSFC with SAM-based methods over BTCV [3],
Synapse [5] and JSRT [17] evaluated by dice score.

Method BTCV
Spleen R.Kid L.Kid Gall. Eso. Liver Stom. Aorta IVC Veins Panc. Adre. Ave

SAM[7] 0.368 0.522 0.621 0.116 0.156 0.446 0.401 0.589 0.462 0.137 0.165 0.158 0.345
SAM2[16] 0.517 0.621 0.669 0.224 0.338 0.615 0.593 0.647 0.489 0.221 0.135 0.132 0.433
SAMed[25] 0.862 0.71 0.798 0.677 0.735 0.944 0.766 0.874 0.798 0.775 0.579 0.79 0.776

SAM-Med3D[18] 0.873 0.884 0.932 0.795 0.79 0.943 0.889 0.872 0.796 0.813 0.779 0.797 0.847
BLO-SAM[26] 0.527 0.661 0.775 0.614 0.39 0.51 0.429 0.508 0.335 0.352 0.464 0.59 0.513

SAMUS[9] 0.868 0.776 0.834 0.69 0.71 0.922 0.805 0.863 0.844 0.782 0.611 0.78 0.79
One-Prompt[21] 0.801 0.789 0.814 0.816 0.818 0.791 0.808 0.737 0.729 0.75 0.813 0.77 0.786
FSSP-SAM[22] 0.862 0.909 0.893 0.691 0.551 0.822 0.588 0.873 0.779 0.517 0.456 0.456 0.699
MedSAM[11] 0.722 0.81 0.835 0.746 0.701 0.851 0.805 0.812 0.723 0.751 0.74 0.713 0.767

MedSAM-2[27] 0.918 0.951 0.954 0.92 0.923 0.945 0.909 0.919 0.859 0.875 0.771 0.86 0.9
Ours 2D 0.948 0.937 0.94 0.846 0.885 0.952 0.925 0.934 0.926 0.684 0.782 0.721 0.873
Ours 3D 0.951 0.965 0.965 0.955 0.928 0.957 0.941 0.911 0.93 0.855 0.844 0.927 0.927

Method Synapse JSRT AVESpleen R.Kid L.Kid Gall. Liver Stom. Aorta Panc. Ave Ave
SAM[7] 0.173 0.452 0.265 0.231 0.32 0.53 0.372 0.506 0.359 0.221 0.308

SAM2[16] 0.596 0.433 0.428 0.256 0.332 0.553 0.445 0.495 0.441 0.463 0.446
SAMed[25] 0.871 0.862 0.894 0.344 0.938 0.771 0.83 0.429 0.742 0.809 0.776

SAM-Med3D[18] 0.895 0.901 0.915 0.491 0.952 0.788 0.868 0.542 0.794 0.845 0.829
BLO-SAM[26] 0.686 0.861 0.661 0.533 0.7162 0.536 0.623 0.44 0.632 0.856 0.667

SAMUS[9] 0.718 0.762 0.76 0.705 0.63 0.724 0.741 0.701 0.718 0.877 0.828
One-Prompt[21] 0.752 0.727 0.729 0.562 0.557 0.769 0.689 0.575 0.67 0.614 0.69
FSSP-SAM[22] 0.728 0.449 0.483 0.199 0.728 0.299 0.146 0.113 0.393 0.367 0.486
MedSAM[11] 0.799 0.813 0.82 0.351 0.924 0.522 0.731 0.294 0.657 0.763 0.729

MedSAM-2[27] 0.886 0.861 0.861 0.733 0.816 0.836 0.923 0.894 0.851 0.845 0.865
Ours 2D 0.895 0.901 0.915 0.791 0.952 0.788 0.868 0.842 0.869 0.968 0.903
Ours 3D 0.944 0.925 0.932 0.877 0.937 0.946 0.931 0.945 0.929 0.971 0.942

3D variants) compared to state-of-the-art (SOTA) models across three medical
imaging datasets: BTCV [3], Synapse [5] and JSRT [17]. On BTCV [3], our
method achieves the highest dice scores for 10 out of 12 anatomical structures,
including significant improvements in challenging regions such as the gallbladder
(95.5% vs. 92.0% from MedSAM-2) and pancreas (84.4% vs. 77.1% from SAM-
Med3D). On Synapse [5], our method outperforms all competitors with an average
dice of 92.9%, showcasing robustness in multi-organ segmentation. For JSRT [17],
our method achieved the best segmentation performance with a dice score of
97.1%, surpassing SAM-based models. Overall, the proposed method attains the
highest average dice (94.5%) across all datasets, highlighting its generalization
capability and effectiveness in both 2D and 3D medical image segmentation tasks.
We present a qualitative comparison of different segmentation methods on BTCV
[3] in Fig. 3. The comparative trends are similar to Table. 1.

Effect of Sub-Module To validate the efficacy of the proposed modules in
this paper, we conducted a comprehensive ablation study on the BTCV [3],
Synapse [5], and JSRT [17], comparing the performance of several variants
of our model in Fig. 4 (left). Since the trends in the ablation experiments
were similar across the three datasets, we selected the BTCV [3] for detailed
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Fig. 3. Qualitative Visualisation on Medical Image Segmentation. Comparison
of SAM-based methods, our DSFC and GT on the BTCV [3].

Ablation Components : 50% training set (left) and 100% training set (right) Augmentation probability : 50% training set (left) and 100% training set (right)

Fig. 4. Ablation Study of DSFC. We evaluate each of components of DSFC and
each of hyper-parameters on the BTCV [3], Synapse [5] and JSRT [17].

textual illustration. First, the baseline result, which is the original segmentation
output of Vanilla (MedSAM [27]), exhibited the worst performance, highlighting
its insufficient capability on specific medical image datasets. Second, all three
variants incorporating our proposed modules (Local-deform, Global-deform, and
HEA loss) showed considerable improvements compared to the baseline, thereby
validating their effectiveness. Third, the combination of Local-deform and Global-
deform further enhanced the model’s performance, suggesting that they are
compatible and effective in augmenting data diversity in global and local image
patterns, respectively. Finally, our proposed model, which integrates all three
modules, achieved the best performance. These results collectively demonstrate
the effectiveness of each submodule and the importance of their collaborative
interaction.

Effect of Hyper-Parameter We investigate the impact of p (augmentation
probability) in Fig. 4 (right). As the probability of enhancement increases, the
results of the network on the test sets of all datasets also show a correspond-
ing improvement. Eventually we select p = 1 for performance evaluation and
comparison with other methods.
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4 Conclusion

This paper presents a Deformation-Aware Learning Strategy via Self-sustaining
Feedback Cycle (DSFC) for domain adaptation of medical vision foundation
models. By introducing global and local deformation perturbation strategies,
DSFC generates samples that conform to real anatomical rules, thereby aiding the
model in learning complex and varied organ patterns. Additionally, we propose
Hard Example Adaptive (HEA) loss function to enhance training stability with
limited samples. Experiments on various public datasets demonstrate that DSFC
significantly improves model performance in multi training settings without the
need for additional samples.
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