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Abstract. In the radiation therapy of nasopharyngeal carcinoma (NPC),
clinicians typically delineate the gross tumor volume (GTV) using non-
contrast planning computed tomography to ensure accurate radiation
dose delivery. However, the low contrast between tumors and adjacent
normal tissues requires radiation oncologists to delineate the tumors with
additional reference from MRI images manually. In this study, we propose
a novel approach to directly segment NPC gross tumors on non-contrast
planning CT images, circumventing potential registration errors when
aligning MRI or MRI-derived tumor masks to planning CT. To address
the low contrast issues between tumors and adjacent normal structures in
planning CT, we introduce a 3D Semantic Asymmetry Tumor Segmenta-
tion (SATS) method. Specifically, we posit that a healthy nasopharyngeal
region is characteristically bilaterally symmetric, whereas the presence
of nasopharyngeal carcinoma disrupts this symmetry. Then, we propose
a Siamese contrastive learning segmentation framework that minimizes
the voxel-wise distance between original and flipped areas without tumor
and encourages a larger distance between original and flipped areas with
tumor. Thus, our approach enhances the sensitivity of deep features to
semantic asymmetries. Extensive experiments demonstrate that the pro-
posed SATS achieves the leading NPC GTV segmentation performance
in both internal and external testing.

1 Introduction

Nasopharyngeal carcinoma (NPC) ranks among the most prevalent head & neck
malignancies affecting the nasopharyngeal region, with patient prognosis sub-
stantially enhanced through early diagnosis and intervention [7]. A significant
proportion of NPC patients can achieve complete remission following radiation
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therapy (RT) [6]. Notably, this type of cancer exhibits a remarkable sensitivity to
radiation therapy, wherein a pivotal component of this therapeutic intervention is
the accurate delineation of the gross tumor volume (GTV). In clinical practice,
magnetic resonance imaging (MRI) has emerged as the predominant imaging
modality for NPC, owing to its superior resolution in visualizing soft tissues.
Subsequently, cross-modality registration is conducted between MRI and non-
contrast planning computed tomography (pCT) to transfer tumor delineations
from MRI to pCT scans for treatment planning [31]. However, cross-modality
registration is non-trivial due to substantial modality gaps and variations in scan-
ning ranges. Alternatively, physicians may integrate pCT and MRI mentally to
assist in delineating the GTV. Nevertheless, this approach is time-consuming,
often taking 1-2 hours per case, and is prone to potential inaccuracies.

Recent advances in learning-based methods have shown success in segment-
ing NPC tumors from MRI scans [12,17,21,22,25,26]. However, MRI does not
provide direct electron density measurements, which are critical for radiotherapy
planning. Tumor masks derived from MRI must be transformed into pCT using
image registration, a process prone to alignment errors. Approaches [4,28] com-
bine CT and MRI for tumor segmentation, although misalignment between the
two modalities can reduce performance compared to single-modality approaches.
Other researchers [2,20,29,30] focus on contrast-enhanced CT-based segmenta-
tion. Still, these methods often achieve low performance (e.g., Dice scores below
70%) due to tumor infiltration into adjacent tissues and limited contrast in pCT,
particularly for soft tissues such as mucous membranes, muscles, and nerves.

This study aims to segment the NPC gross tumor volume (GTV) in non-
contrast planning CT (pCT), avoiding registration errors associated with align-
ing MRI or MRI-derived tumor masks to pCT. Direct segmentation of NPC
GTYV in non-contrast pCT is challenging due to indistinct boundaries between
tumors and adjacent soft tissues [19], such as membranes, muscles, and vessels.
Meanwhile, we observe that medical image analysis benefits from the bilateral
symmetry of human anatomy, evident in structures like the head, brain, breasts,
lungs, and pelvis. Research [3,13,14,23,24,34] highlights the utility of symmetry-
based approaches in enhancing early detection capabilities. Therefore, we pro-
pose a tumor segmentation method for NPC, which leverages the observation
that a healthy nasopharyngeal region is bilaterally symmetric, but the presence
of a tumor disrupts this symmetry. While prior work has explored symmetry in
medical imaging, our approach differs significantly in how symmetric features
are utilized. For instance, [13] employs symmetric position encoding for brain
structures using an autoencoder, without explicit constraints on symmetric or
asymmetric regions (e.g., via custom losses or modules). [34] leverages pelvic
symmetry to detect fractures but focuses primarily on symmetric anatomy. In
contrast, our method emphasizes the contrast between asymmetric lesion areas.

The main contributions of this work are: 1) We introduce a 3D semantic
asymmetry tumor segmentation (SATS) method for NPC GTV in non-contrast
pCT, which is the most common imaging modality in RT planning. To the best
of our knowledge, this is the first work to tackle the NPC GTV segmentation in
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non-contrast CT scans and employ the symmetry cue for the GTV segmentation.
2) We develop a Siamese contrastive learning segmentation framework with an
asymmetrical region selection approach, which facilitates the learning of asym-
metric tumor features effectively. 3) We demonstrate that our proposed SATS
achieves state-of-the-art performance in NPC GTV segmentation, outperforming
the leading methods in internal and external testing datasets.

2 Method

We propose a 3D semantic asymmetry tumor segmentation (SATS) method
based on the semantic asymmetry property of the gross tumor in the nasopha-
ryngeal area, to enable accurate NPC GTV segmentation. Given one CT scan,
as shown in Figure 1 (a), we utilize a shared encoder-decoder module to process
both the original image I € RP*HXW wwhere D, H,W are CT image spatial
dimensions, and its flipped image I’, thereby encoding them into a symmetric
representation. Subsequently, we introduce a non-linear projection module and a
distance metric learning strategy to refine the resulting feature maps. We intend
to maximize the dissimilarity between E and Fj at corresponding anatomical
locations on the abnormalities and normalities. The distance metric learning
paradigm is illustrated in Figure 1 (b).

2.1 Asymmetrical Abnormal Region Selection

We focus on asymmetrical lesion areas relative to the central sagittal axis, i.e.,
region B of Figure 1 (b). To this end, we perform: 1) head-neck position nor-
malization (bilateral symmetry along the central sagittal axis) of the overall
head-neck region by utilizing rigid registration (rotation and translation). 2)
The asymmetrical abnormal region is obtained by subtracting symmetrical le-
sion regions from the original mask.

To be specific, considering that image asymmetry may originate from patho-
logical or non-pathological sources, such as changes in imaging angles and patient
postures, we pre-process the CT scans using [33] to ensure that the scans are
symmetric along the central sagittal axis. We manually select a patient CT im-
age with bilateral symmetry along the central sagittal plane, which serves as
an atlas, and then align other patient CT images to the atlas space through
affine registration. This step helps to alleviate the influence of other asymmetric
anatomical structures in the head & neck that may mislead the model.

Then, we detect asymmetric abnormal regions using the available tumor an-
notation. The semantic segmentation mask of I is denoted as s € {0, 1}P>*HxW
where 0 represents the background and 1 represents the foreground of tumors.
Through the flip operation, we can obtain the flipped semantic mask s’ of I’.
Subsequently, an asymmetrical mask m is defined to locate asymmetrical regions
in the image I, as m = s — sN s’, where m € {0, 1}P*#*W _Note that 1 and 0
represent the asymmetrical and symmetrical regions in I, respectively.
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Fig. 1: (a) Our SATS model begins with the encoder-decoder module, which uses
shared weights to process two input signals and encode them into a discrimi-
native representation. This representation is then further processed through a
non-linear projection module and a distance metric learning module to produce
feature maps. (b) A graphical representation of our metric learning strategy. Cir-
cles indicate individual CT images, I, while red squares highlight the tumors.
The tumors are composed of A and B, representing symmetrical and asymmet-
rical lesions relative to the central sagittal axis of symmetry, respectively.

2.2 Asymmetrical Learning Strategy

Our segmentation loss function is comprised of two components: a combination
of Dice and entropy loss for the conventional segmentation purpose, and a voxel-
wise margin loss specifically designed for asymmetric abnormal regions.

Metric-based margin loss. In the asymmetric anomaly region, we aim to
minimize the similarity between the features of any point and its corresponding
point on the central sagittal axis. To achieve this, we employ pixel-level margin
loss. Based on above asymmetrical abnormal region m, the margin loss between
features £ € REXWxDxC where C is the number of output features, and flipped
E’ after a non-linear projection is as:

lmargin = ijg’w[l(m(i,j,k)zn ||E(Zv.7a k) - El(ivja k)||2+
1(m(i,j,k);£1) max(t - HE(%L k) - El(iaj7 k)||27 0)]

where 1 is the indicator function, and ¢ defines a margin that regulates the degree
of dissimilarity in semantic asymmetries.

Overall loss function. We approach tumor segmentation as a binary seg-
mentation task, utilizing the Dice loss, binary cross-entropy loss, and mar-
gin loss as our objective function. The overall loss function is formulated as:
U= lgice + lce + Blmargin, where 3 is the weight balancing the different losses.

(1)

2.3 Siamese Segmentation Architecture

Our SATS architecture comprises the encoder-decoder module and the projec-
tion head. While both components are engaged during the training process, only
the encoder-decoder module is required during inference.
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Siamese encoder-decoder. The backbone is a shared U-shaped encoder-
decoder architecture, as shown in Fig. 1. The encoder employs repeated applica-
tions of 3D residual blocks, with each block comprising two convolutional layers
with 3 x 3 x 3 kernels. Each convolutional layer is succeeded by InstanceNorm
normalization and LeakyReLU activation. For downsampling, a convolutional
operation with a stride of 2 is utilized to halve the resolution of the input feature
maps. The initial number of filters is 32 and doubles after each downsampling
step to maintain constant time complexity except for the last layer. In total, the
encoder performs four downsampling operations.

Projection head. We utilize a non-linear projection g to transform the
features before calculating the distance in margin loss, which aims to enhance the
quality of the learned features. It consists of three 1x1x1 convolution layers with
16 channels followed by a unit-normalization layer. The first two layers in the
projection head use the ReLU activation function. We hypothesize that directly
applying metric learning to segmentation features might lead to information
loss and diminish the model’s effectiveness. For example, some asymmetries in
CT images are non-pathological and may stem from variations in the patient’s
head positioning and posing, yet they are beneficial for segmentation. Utilizing a
non-linear projection may filter out such irrelevant information from the metric
learning process, ensuring it is preserved in the features used for segmentation.

3 Experiments

3.1 Data Preparation and Implementation Details

We collected an in-house dataset from the hospital for the model development,
which consisted of 163 NPC patients with pCT, contrast-enhanced diagnostic
CT, and diagnostic MRIs of T1 & T2 phases. Diagnostic CT and MRI were
registered as, initially, a rigid transformation [1] was applied to the MRI im-
ages to approximately align with the CT images. Then, deformable registration
algorithm, deeds [11], was utilized to achieve precise alignment. The contrast-
enhanced CT and MRIs are used to guide radiation oncologists to generate
ground-truth GTV in pCT. Also, we collected a public dataset, SegRap2023 °,

® https://segrap2023.grand-challenge.org/dataset /
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Fig. 2: Left: data partitioning situation. Right: the size of the asymmetric regions
of different individuals, with the x-axis displaying each test object.
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as external testing dataset, containing 118 non-contrast pCT and enhanced CT.
Annotations of all datasets were examined and edited by two experienced radi-
ation oncologists following the international GTV delineation consensus guide-
line [18]. For evaluation, 20 % of the in-house dataset was randomly selected
as the internal testing set, and the entire curated SegRap2023 was used as the
external testing dataset. As shown in Figure 2, the asymmetric regions in the ex-
ternal data are larger than those of in-house, making the task more challenging.
Implementation. The model training is divided into two stages. In the first
stage, only the Siamese encoder-decoder is trained for 800 epochs with a learning
rate of 1e — 2 and decayed via a polynomial schedule. Then, the projection head
is trained for 200 epochs, with a learning rate of le — 2 for the projection head
and le — 5 for the encoder-decoder, both with decayed via a polynomial sched-
ule. The patch size is 56 x 192 x 192 and the batch size is 2. For the voxel-wise
contrastive loss, we use a margin hyperparameter ¢ = 20 and 5 = 1.

3.2 Comparing to State-of-the-art Methods

Comparison methods. We conducted a comprehensive comparison of our
method with ten cutting-edge approaches, encompassing prominent CNN-based,
Transformer-based and Mamba-based methods, to evaluate its performance.
CNN-based methods include STU-Net S [15], STU-Net B [15], STU-Net L [15],
MedNeXt [32] and nnUNet [16]. Transformer-based methods include UNETR [9],
TransUNet [5], SwinUNETR [8] and its variant SwinUNETR-v2 [10]. Mamba-
based methods include UMambaBot [27]. To maintain a fair comparison, we
trained all competing models for an equal number of epochs, 1000. Evaluation
metrics. We evaluate the performance using the Dice similarity coefficient,
DSC (%), and the 95th percentile of the Hausdorff distance (HD95, mm) and
average surface distance (ASD, mm) across all cases.

In-house dataset performance. Table. 1 summarizes the quantitative seg-
mentation performance and model parameters. Under a relatively small number
of parameters, the proposed SATS demonstrates an improvement over previous
approaches. For example, SATS outperforms the transformer-based SWinUNETR-
V2 in DSC, and HD95 by 0.81% and 3.6%, respectively. Figure 3 presents the
segmentation results of the top four performing methods (SATS, SwinUNETR-
V2, SwinUNETR, and nnUNet) on a sample from the in-house dataset. It can be
observed that our SATS method exhibits higher accuracy in boundary segmen-
tation (e.g., the nasal septum). Robustness. Large primary tumors can cause
asymmetrical anatomical changes. NPC patients often show lymphatic involve-
ment, significantly affecting the integrity and symmetry of nearby structures.
Figure 5 highlights cases of lymphatic invasion, demonstrating our robustness in
handling lymph nodes while accurately segmenting the primary tumor.

Performance in external evaluation. Table 1 and Figure 4 summarize
the external testing results. Several conclusions can be drawn. First, the pro-
posed SATS achieves the best performance as compared to all other leading
methods in external evaluation. As compared to an increase of 0.92% DSC over
the 2nd best-performing method (nnUNet) in internal testing, SATS exhibits a
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Table 1: Quantitative results on NPC GTV segmentation task. In-houses,qin =
In-house;.s; represents training on scans from the In-house dataset and segment-
ing images in the test set of the In-house dataset. 1: Higher values are better.
J: Lower values are better. The last column presents the number of model pa-
rameters (in millions). The best-performing results are shown in bold while the
second-best results are indicated by underlining. : Statistical significant with
P < 0.05 in comparison to our SATS.

In-housetrqin = In-housetes: In-houseirqin = Externalies:

Method Para. (M)
DSC 1 HDO95 | DSC 1 HD95 |

UMambaBot  79.27 &£ 7.77f 4.66 £+ 3.93 63.08 £ 12.02f 9.22 £ 7.52  64.76
UNETR 75.75 + 8.92f 5.41 £+ 4.07 62.56 £ 12.50f 9.27 £ 7.46 93.01
TransUNet 78.95 + 8.281 6.42 £ 12.89 62.96 £+ 13.491 9.52 + 8.16 119.37
SwinUNETR  80.01 + 8.04 4.52 £ 2.77 62.90 £+ 11.90f 9.11 £+ 7.41 62.19
SwinUNETR-V2 80.41 £ 7.80 4.17 +2.40 63.81 &+ 12.11f 8.90 + 7.32 72.89
MedNeXt 76.15 + 9.83f 5.09 £ 3.93 64.77 £ 12.051 9.01 £ 7.50 61.80
STU-Net S 79.04 £ 7.30 4.95 £ 4.08 63.50 + 11.96% 9.07 £ 7.33 14.60
STU-Net B 78.86 & 7.38 4.91 £ 3.98 63.54 + 12.05F 9.14 £ 7.46  58.26
STU-Net L 79.24 £ 7.23 4.64 £ 3.80 63.50 + 11.91F 9.09 £ 7.25 440.30
nnUNet 79.30 £ 9.77 4.07 £ 2.77 64.40 + 11.82f 8.84 £7.40  30.70
SATS (Ours) 81.22 + 8.33 4.02 + 2.74 66.80 + 12.02 8.51 + 7.84 30.70

Segmentation results of the top four methods

Ground Truth

SATS (Ours)

Image SwinUNETR-V2 SwinUNETR UMambaEnc

Fig.3: Example CT slices with tumor segmentation overlays (red color) using
different methods on the In-house dataset.

substantial improvement of 4.4% DSC over nnUNet in external evaluation. This
demonstrates the better generalizability of the proposed semantic asymmetry
learning in NPC GTV segmentation. Third, the proposed SATS consistently
outperforms other leading methods in terms of HD95 (>3.7% error reduction).
Lastly, although SwinUNETR-V2 performs 2nd best in internal testing with
1.11% DSC improvement over nnUNet, nnUnet outperforms SwinUNETR-V2
in external testing by 0.61% DSC. This result indicates the strong performance
of CNN-based nnUNet over transformer-based segmentation models.
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Image Ground Truth SATS (Ours) SWinUNETR SWinUNETR-V2 MedNeXt

UMambaEnc STU-Net S STU-Net B STU-Net L UNETR TransUNet

Fig.4: Example CT slices with tumor segmentation overlays (red color) using
different methods on the External dataset.

Dice score

034 ¢ - Baseline
Baseline+Marg.Loss
Baseline+Marg.Loss+Proj.Head(Ours)

- XN

40 60 80
Image W/ LN Ground Truth SATS (Ours) Subjects (sorted by Dice score)

0 20 100 120

Fig. 5: Segmentation results for two Fig. 6: Dice score compared to the baselines
nodal-involved (green) patients. ~ shown for each test subject.

3.3 Ablation Studies

Effect of projection head and margin loss. Table 2 demonstrates per-
formance metrics for different segmentation models on the external data (In-
houseyqin, = Externali.s;). There is a significant performance boost (+4.98%
DSC, —0.60mm ASD and —1.15mm HD95) when both the projection head mod-
ule and margin loss are taken into account. Effect of semantic asymmetry
learning. In Figure 6, we present a comparative analysis of our method against
the baseline configurations that exclude the projection head module and/or em-
ploy margin loss baselines. As depicted, our method demonstrates consistent
superiority over all baseline models across the majority of the 117 test scans.
Failure cases analysis. Our method performs poorly on extreme outliers in
Figure 6, misclassifying symmetric lesions as asymmetric and achieving lower
DSC than the nnUNet baseline. A complementary framework combining our
approach with nnUNet could enhance clinical robustness.
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Table 2: Influence of the effect of the projection head and margin loss.

Proj. Head Marg. Loss| DSC (%) ASD (mm) HD95 (mm)
3 I3 63.44 & 10.54 2.97 + 1.37 7.22 £ 3.34
X v 61.50 £ 10.02 3.20 = 1.39 7.73 + 3.58
v v 66.32 + 10.48 2.60 = 1.36 6.58 + 3.50

4 Conclusion

We propose a novel semantic asymmetry learning method that leverages the
inherent asymmetrical properties of tumors in the nasopharyngeal region. Our
method demonstrates a significant improvement in NPC GTV segmentation by
effectively utilizing semantic symmetry inherent in anatomical structures, achiev-
ing superior performance compared to state-of-the-art methods, as validated on
both an internal test set and an independent external dataset.
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