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Abstract. Accurate and automatic lifespan brain cortical surface re-
construction (CSR) is crucial for analyzing brain development and ag-
ing. Traditional pipelines involve multiple processing steps, which are
time-intensive and inefficient for handling larger datasets. While deep
learning-based methods can accelerate reconstruction speed and produce
high-quality meshes compared to traditional approaches, they are of-
ten constrained to a single time point. The limitation arises from the
significant variations in cortical surfaces across age groups, particularly
in folding patterns. In this paper, we propose a novel curvature-guided
diffeomorphic mesh deformation framework for lifespan brain CSR. Specif-
ically, to preserve correct topology structure and uniformity, the frame-
work employs multiple deformation blocks to gradually warp a simple
smooth template mesh to a complex target surface with high folding.
Considering that curvature is closely associated with folding patterns,
we introduce curvature map prediction as an auxiliary task to guide
the deformation process, enhancing the anatomical accuracy to facilitate
subsequent cortical morphometry. Notably, incorporating curvature can
also expedite model convergence. Our method is evaluated on a large-
scale brain dataset with 2,132 subjects spanning ages 0 to 100 years.
Experimental results show that our reconstructed surfaces have fewer
geometric errors and optimal mesh regularity while being several orders
of magnitude faster than traditional pipelines. Our code is available at
https://github.com/TLI792/CCF.

Keywords: Lifespan - 3D cortical surface reconstruction - Curvature-
guided diffeomorphic mesh deformation - Deep learning.

1 Introduction

The human brain undergoes dramatic changes in size, shape, and tissue intensity
distribution throughout the lifespan!, particularly during the first postnatal

!Lifespan refers to the duration of an organism’s life, from birth to old age.
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year |[1]. These changes are especially prominent in cortical surfaces?, where
cortical shape and thickness vary with age. Compared to volumetric data, the
cortical surface provides more detailed geometric representations of the brain,
enabling the visualization of cortical structures and supporting various down-
stream analyses by calculating cortical properties (e.g., cortical curvature and
thickness) [23]. Consequently, accurate brain cortical surface reconstruction (CSR)
from volumetric data is crucial for understanding brain development, aging, and
associated neurodegenerative disease diagnosis.

Traditional surface analysis packages designed for a single time point, such
as Infant FreeSurfer [24], FreeSurfer [8], and FastSurfer [10], typically involve
multiple time-consuming steps. This makes it challenging to efficiently analyze
large datasets. To address this, deep learning-based CSR approaches have emerged,
and these can be broadly categorized into implicit and explicit methods depending
on the 3D shape representation they operate on. Implicit methods leverage
deep neural network (DNN) to learn an implicit surface representation, such
as an occupancy field and a signed distance function (SDF) [4,7,8,10,16|. For
example, Cruz et al. [4] proposed DeepCSR, a model that predicts implicit surface
representations for points and subsequently applies an isosurface extraction
method to reconstruct adult brain cortical surfaces. However, these implicit
methods often fail to ensure the quality of reconstructed meshes with topology
correctness. For explicit methods [13,14,18,22], a DNN is trained in an end-
to-end manner to directly generate an explicit mesh by deforming an initial
mesh into a target mesh. For example, Ma et al. [14] proposed a PialNN to
generate outer surfaces from inner surfaces as input through multiple deformation
blocks. Similarly, Lebrat et al. [18] proposed CorticalFlow™ ™, which employs
diffeomorphic mesh deformation (DMD) modules to learn a series of stationary
velocity fields (SVF) defining diffeomorphic deformations from an initial template
to inner and outer surfaces. These explicit methods have gained attention for
their capability to preserve topological accuracy while achieving exceptional
computational efficiency. However, they often ignore the deformation of key
regions with high folding, making it challenging to reconstruct brain cortical
surfaces with significant variations across large-scale age groups.

Here, we propose a curvature-guided diffeomorphic mesh deformation frame-
work for lifespan brain CSR. Specifically, we build upon CorticalFlow™ ™ as our
baseline due to its efficiency in preserving topology details. Beyond CorticalFlow ™,
we use brain tissue segmentation maps predicted from our proposed segmentation
model [19,20] rather than brain MR images as input. This allows the model
to focus directly on interfaces between different tissues, thereby alleviating the
partial volume effect (PVE) problem commonly encountered in brain MR images.
Moreover, we introduce curvature as prior knowledge to guide the diffeomorphic
deformation of high-folding regions through a multi-task learning strategy. This

?Brain cortical surface consists of inner/white and outer/pial cerebral cortex in
each hemisphere. The inner surface refers to the boundary between white matter
(WM) and gray matter (GM), and the outer surface is the interface between GM
and cerebrospinal fluid (CSF) [5].
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enhances reconstruction accuracy, particularly in regions with rich anatomical
information, such as sulci and gyri. Notably, introducing curvature not only
improve accuracy but also accelerate convergence without increasing GPU con-
sumption. The proposed method is evaluated on a large-scale lifespan brain
dataset, and experimental results demonstrate that our mesh outperforms other
state-of-the-art (SOTA) methods in terms of geometry and regularity.

2 Methodology

Fig. 1 illustrates our proposed framework for lifespan brain CSR, which consists
of a series of curvature-guided deformation blocks that are trained sequentially
(detailed in Section 2.1). Each block comprises one UNet-like architecture [3]
(detailed in Section 2.3) and a DMD module [13]. The UNet-like model predicts a
curvature-aware flow field that estimates per-vertex displacement vectors on the
current state of deformation and a curvature map. The DMD module computes
a diffeomorphic mapping to transform an initial template mesh into the target
mesh, such as inner or outer surfaces, shown in Section 2.2.
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Fig. 1. An overview of our proposed curvature-guided diffeomorphic mesh deformation
framework for lifespan brain CSR. The framework consists of multiple curvature-guided
deformation blocks to sequentially deform an initial template mesh to the target mesh
through a coarse-to-fine learning strategy (i.e., inner or outer surfaces).

2.1 Overview

To mitigate the challenges associated with large deformations from a smooth
template mesh to a complex brain cortical surface, we adopt a coarse-to-fine
learning strategy. This approach decomposes a substantial deformation into
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multiple simpler deformations, enhancing both accuracy and efficiency. The
framework includes three sequential deformation stages for reconstructing inner
and outer surfaces of each brain hemisphere. Specifically, in the initial stage, a 3D
brain tissue segmentation map (I;;ssue) with dimension HxWxDx1 is fed into
the first deformation model (UNet-C), and the output includes a curvature-aware
flow field (F1) of dimension Hx WxDx3 and a curvature map (C) of dimension
HxWxDx1 (detailed in Section 2.2). Subsequently, F; and a smooth template
mesh comprising 40k vertices (T37) are processed through a DMD module to
produce a coarse cortical surface (S7). In the second stage, the concatenation of
Liissue, F1, and C; serve as input to the second deformation model UNet-F, and
the output includes a curvature-aware flow field (F3) and curvature map (Cz).
Both F, and T, with 140k vertices are fed into DMD module to yield a refined
cortical surface (S3). The third deformation stage mirrors the second, differing
only in the use of a template mesh with 380k vertices (73). This hierarchical
approach ensures a progressive refinement of the cortical surface, effectively
capturing intricate anatomical details. The total deformation equation is as
follows:

F1,C1 = UNet-C(1tissue)s
S1=DMD (F1,Th),
Fii1,Cit1 = UNet-Fipy (F7C - FyCilbissue) s for i > 1.
Sit1=DMD (Fi1, Tit1),

(1)

where F;, C;, and S; are i-th predicted curvature-aware flow field, i-th predicted
curvature map, and i-th reconstructed surface, respectively. ¢ is the number of
deformation iteration, i.e., ¢ = 3. — represents the concatenation operator.

2.2 Curvature-Guided Diffeomorphic Mesh Deformation

Cortical surfaces exhibit significant variations across different age groups, partic-
ularly in detailed sulcal and gyral patterns. These variations pose challenges in
accurately aligning a template with each individual’s unique cortical structure
while preserving the fine details of the surface topology. To solve this issue,
we introduce curvature as prior knowledge to guide the deformation process.
Curvature effectively quantifies the folding patterns of cortical surfaces, capturing
both local variations in surface shape and the overall structure of the brain’s
gyral and sulcal regions.

Curvature Map Generation. Due to the lack of a one-to-one correspondence
between the vertices of the template mesh and the pseudo-ground truth, we
generate the curvature map within volumetric space rather than directly on the
surface. Initially, we compute the mean curvature value at each vertex of the
pseudo-ground-truth cortical surface using the PyVista library. To align them
with brain MR image, these vertex-specific curvature values are then mapped
into 3D volumetric space by correlating vertex coordinates to voxel positions.
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The process yields a curvature map as C with dimension of HXxWxD, where
H, W, and D are the length, width, and depth of brain MR image, respectively.
Finally, the curvature values are normalized to a range between -1 and 1, where
negative values represent sulcal regions while positive values are gyral regions.

Multi-Task Learning. To effectively utilize curvature to guide the deformation
of critical regions, we adopt a multi-task learning strategy. Each deformation
model is designed with two branches: one for predicting a curvature-aware
flow field and the other for predicting a curvature map. By using curvature map
prediction as an auxiliary task, the model becomes more anatomy-aware, enabling
it to better capture features in high-folded regions. This approach enhances the
model’s ability to reconstruct cortical surfaces with high accuracy, particularly
in regions with complex anatomical structures.

Curvature-aware Diffeomorphic Deformation. To accurately deform a
template mesh to the target mesh, the predicted curvature-aware flow field (F')
and a template mesh (7T') are fed into a DMD module, computing a diffeomorphic
mapping ¢ as an ordinary differential equation (ODE) for each vertex position
x € R3, to obtain a new mesh that is closer to the target mesh. Formally, the
procedure of solving the flow ODE

W = Ui (¢i (55741)) , 0i (0375, %) = i1 1, (2)
using the fourth-order Runge-Kutta (RK4) with 30 time-steps [17]. ¢;, U;, and
x; 1, are the i-th diffeomorphic mapping, the i-th curvature-aware flow field, and
the k-th vertex of i-th surface, respectively. The condition is that x; j is the same
as T;—1,, when s=0. Formulating a deformation as an ODE significantly reduces
the occurrence of self-intersecting faces, thereby more accurately approximating
the target surface.

2.3 Network Architecture

The framework comprises three sub-networks with a 3D UNet-shape architecture:
UNet-C and two UNet-F. UNet-C consists of four down-/up-sampling convolu-
tional blocks and two 3x3x3 convolutional layers, and UNet-F has two down/up-
sampling convolutional blocks and two convolutional layers. Down-sampling
convolutional block includes a 3x3x3 convolutional layer and a LeakyReLLU
activation layer. Up-sampling convolutional block includes a 3x3x3 convolu-
tional layer, a LeakyReLU activation layer, and a transposed convolutional layer.
The rationale behind this architectural change is to facilitate the learning of
coarse-to-fine deformations [13].

2.4 Loss Function

The training process is supervised by a composite loss function comprising
Chamfer distance loss L.q [22], edge length loss Legge [22], and curvature loss
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Leurvature, €ach weighted by hyperparameters A1, Ao, and A3, respectively.
L(Spa Sga Op7 Og) = )\chd(Spy Sg) + )\2Ledge(sp) + )‘3Lcur'uature (Cpa Og)a (3)

where L.q and Lcgg. are computed on 150k points from uniformly sampling at
random on the predicted (S,) and pseudo-ground-truth surfaces (Sq). Leurvature
calculates the mean absolute error between the predicted (Cp) and ground truth
curvature map (Cy). A1, A2, and A3 are set to 1.0, 1.0, and 0.001 based on the
magnitude of loss values, respectively.

3 Experiments and Results

3.1 Datasets and Metrics

We have compiled a comprehensive lifespan brain dataset encompassing indi-
viduals aged 0 to 100 years, comprising 2,132 T1-weighted (T1w) MR images
sourced from 18 repositories. These include 341 subjects (0-6 years) from Baby
Connectome Project (BCP) [11], 30 subjects (9-11 years) from Adolescent Brain
Cognitive Development (ABCD) 2], 295 subjects (18-81 years) from CBMFM (9],
22 subjects (18-94 years) from Open Access Series of Imaging Studies (OA-
SIS) [15], 129 subjects (56-96 years) from Alzheimer’s Disease Neuroimaging
Initiative (ADNI) [12], 69 subjects (6-56 years) from Autism Brain Imaging Data
Exchange (ABIDE) [6], and 875 subjects (2-95 years) from private hospitals.
Each subject has a T1lw MR image, a tissue segmentation map generated by our
previously developed segmentation model mentioned above, and pseudo-ground-
truth surfaces derived using Infant FreeSurfer [24] and FreeSurfer pipelines with
different smoothing parameters set, based on our tissue segmentation maps. The
T1w MR image is preprocessed with skull stripping, intensity normalization, and
bias field correction [21]. All volume data are standardized to a resolution of
193x229x193 with voxel spacing of 1.0x1.0x1.0 mm?. Each dataset is randomly
partitioned into training, validation, and testing in a ratio of 8:1:1 for each age
group [1]. Performance is evaluated using Chamfer distance (CD), 95th-percentile
Hausdorff distance (HD), and normal consistency (NC) calculated for point clouds
of 200k points with uniform sampling.

3.2 Implementation Details

Experiments are implemented on one NVIDIA A100 GPU with 40GB memory.
Each deformation model is trained with 70K iterations for inner surface recon-
struction. After that, the estimated inner surfaces serve as the initial template
mesh to reconstruct outer surfaces, in which each deformation model is trained
with 70K iterations while freezing the parameters of the white model. This en-
sures a one-to-one mapping between the vertices of the inner and outer surfaces,
facilitating brain analysis. An Adam optimizer with an initial learning rate of
e~ is used. Batch size is 3.
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Table 1. Quantitative comparison of brain cortical surfaces from different SOTA
methods in terms of CD, HD, and NC (1 and | denote larger and smaller values,
respectively. \ is no result. The best results are in bold).

Method Left Inner Surface Right Inner Surface

CD (mm) | HD (mm) | NC1 |CD (mm))HD (mm)] NC1?
PialNN \ \ \ \ \
DeepCSR 4.98+21.49 1.71+2.80 0.88+0.06 |3.00+£10.77 1.45+1.98 0.89+0.06
CorticalFlow™| 1.31+£1.22 1.15+0.47 0.88+0.06 | 1.02+0.93 1.01+0.39 0.8940.05
Ours 0.46+0.22 0.69+0.10 0.95+0.01(0.53+0.18 0.76+0.10 0.94+0.01

Left Outer Surface Right Outer Surface

CD (mm) | HD (mm) | NC1 |CD (mm) ) HD (mm)] NC1?
PialNN 1.36+£0.54 1.27+0.29 0.87+0.02 | 1.26+0.44 1.21+£0.24 0.87£0.02
DeepCSR 4.91+4.19 3.00£1.44 0.8440.04 | 5.37+£4.56 3.18%£1.41 0.8440.04
CorticalFlow'| 1.25+1.44 1.0640.56 0.8740.05 | 1.10+1.16 1.04+0.52 0.9140.04
Ours 0.47+0.18 0.68+0.09 0.94+0.01|0.51+0.09 0.77+0.06 0.95+0.01
3.3 Results

Comparison with SOTA methods. We evaluated our method against several
representative SOTA methods in brain CSR, including PialNN, DeepCSR, and
CorticalFlow™ . To ensure a fair comparison, we reproduced all methods using
their official code and applied the same dataset and partition strategy.

3 months

6 months 20 years

W Py
Y sk o
Z;,.?zf_:,ﬁ SR

Ours CorticalFlow** DeepCSR PialNN

Distance error (mm)

Fig. 2. Reconstructed left inner and outer surfaces across different age groups from
different SOTA methods, which are color-coded with distance errors relative to pseudo-
ground-truth surfaces.

Table 1 shows the quantitative comparison of brain CSR from different SOTA
methods in terms of CD, HD, and NC. As we can see, our method outperforms
other SOTA methods on all metrics. For example, PialNN shows relatively
strong performance in outer surface reconstruction, although it is not suitable
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for reconstructing inner surfaces. DeepCSR exhibits the poorest performance in
all metrics, likely due to its implicit representation learning approach that does
not ensure topological correctness. In contrast, our method achieves significant
improvements over the baseline (i.e., CorticalFlow'™), with reductions of 0.78
mm in CD, 0.38 mm in HD, and 0.11 in NC for left outer surface reconstruction,
respectively. Fig. 2 visualizes predicted left cortical surfaces across multiple age
groups, color-coded to indicate the distance to pseudo-ground-truth surfaces from
different SOTA methods. Our surfaces have smaller geometric errors than other
SOTA methods, as evidenced by the distance errors overlaid on the surfaces. For
example, reconstructed surfaces from CorticalFlow™ ™ exhibit significant errors
in highly folded regions (e.g., sulci and gyri). Besides, our method is more robust
than other methods. Compared to DeepCSR and PialNN, our reconstructed
surfaces across multiple age groups are more consistent.

Ablation Study. We conduct an ablation study to assess the impact of using
the tissue segmentation map as input and adding the curvature prediction branch
on the performance of lifespan brain CSR.

Tissue Segmentation Map as Input We conduct two experiments based on
CorticalFlow™ ™ using either brain MR image or tissue segmentation map as
input to verify the benefit of incorporating tissue-specific information, respec-
tively. Experimental results show that CorticalFlow ™ +1;ssue achieves CD, HD,
and NC of 0.63/0.67 mm, 0.83/0.85 mm, and 0.90/0.90 for left inner/outer
surface reconstruction, and 0.72/0.73 mm, 0.86/0.86 mm, and 0.91/0.93 for right
inner/outer surface reconstruction, respectively. Compared to CorticalFlow™ ™,
CorticalFlow™ ™ 4I4;5sue brings improvements of 68% in CD and 32% in HD for
left inner surface reconstruction. This demonstrates that tissue maps provide
clearer boundary information, effectively mitigating the PVE effects present in
brain MR images.

Curvature Prediction Branch Building upon CorticalFlow™ ™ 41445y, We intro-
duce a curvature prediction branch using a multi-task learning strategy. Com-
pared to CorticalFlow™ ¥ +1;,5ue, curvature prior brings improvements across all
metrics, including 18%/21% (CD) and 12%/13% (HD) for inner/outer surface
reconstruction. This highlights that curvature prediction provides additional
anatomical features for deformation models, leading to enhanced reconstruction
accuracy and structural fidelity. Furthermore, incorporating curvature reduces
the convergence time from 3.5 days to 3 days.

4 Conclusion

In this paper, we have presented a novel curvature-guided flow-based approach
for efficient lifespan brain CSR. To preserve accurate topology and anatomical
properties for cortical surfaces with large variations across multiple age groups, the
framework consists of several curvature-guided deformation blocks that gradually
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transform a smooth template mesh to the inner surface and subsequently into the
outer surface using a coarse-to-fine strategy. Experiments conducted on extensive
lifespan brain datasets demonstrate that our method achieves more precise mesh
regularity and better preservation of cortical folding patterns compared to other
SOTA methods. Therefore, this method will be integrated into our developed
lifespan brain analysis pipeline to support clinical studies of brain development
and aging.
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