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Abstract. Deformable tissue reconstruction in endoscopy is vital for
surgery, yet current methods struggle with high-fidelity reconstruction
of irreversible tissue deformations. To this end, we present D4Recon, a
novel framework for real-time and high-fidelity endoscopic reconstruc-
tion, addressing crucial challenges in surgical applications. A Dual-stage
Deformation modeling and a Dual-scale Depth guidance (D4) are pro-
posed in a dynamic 3D Gaussian Splatting paradigm along with lightweight
multi-layer perception (MLP) to model dynamics in endoscopic scenes. In
the dual-stage deformation modeling, we introduce a spatial deformation
model to correct multiview inconsistencies, accompanied by a temporal
deformation model that accurately represents tissue distortion and dy-
namic tissue interaction with surgical tools in the reference frames. In
the dual-scale depth guidance, we propose to balance local error correc-
tion with absolute depth consistency, enabling precise depth refinement
while preserving fine-grained color accuracy. D4Recon generates accu-
rate 3D reconstructions with superior PSNR, SSIM, and LPIPS scores,
outperforming existing methods in terms of geometric coherence and
photorealism with real-time rendering speed, as demonstrated by exten-
sive experiments on diverse endoscopic datasets. Reconstruction videos
are in the supplementary file. Website.
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1 Introduction

Endoscopic reconstruction (ER) is pivotal in minimally invasive surgery, provid-
ing enhanced intraoperative visualization and surgical guidance while reducing
patient trauma and recovery time. High-fidelity ER also enables downstream
applications such as simulation, AR/VR-based training, and robotic automa-
tion. However, achieving accurate reconstruction remains challenging due to the
constrained nature of endoscopic environments, characterized by limited fields
of view, occlusions, and complex tissue deformations induced by physiological
motion and surgical interactions. These factors significantly hinder traditional
ER methods, necessitating robust and efficient solutions.

Early approaches used explicit discrete representations such as point clouds
[33] and surfels [16] to model scene geometry, but they struggled with complex

https://hritam-98.github.io/D4Recon/
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tissue deformations due to sparse warp fields. Neural Radiance Fields (NeRF)
[18] shifted the paradigm by offering continuous representations that capture
high-fidelity geometry and appearance—evidenced by EndoSurf [31] that lever-
ages SDF [1] for surface reconstruction. LerPlane [28] further improved effi-
ciency by encoding spatiotemporal features via orthogonal 2D planes [6]. How-
ever, NeRF-based methods require extensive ray sampling for complex surgical
dynamics, incurring high computational overhead even with optimizations [13],
hindering real-time rendering—a critical intraoperative requirement.

3D Gaussian Splatting (3DGS) [11] has recently gained attention for surgi-
cal scene reconstruction due to its efficient differentiable rendering scheme us-
ing anisotropic 3D Gaussians and tile rasterization, which significantly enhances
training and rendering speed than NeRF [7, 12, 15]. However, static Gaussians in
3DGS are inadequate for dynamic scenes, prompting the extension to 4D Gaus-
sian Splatting (4DGS) for temporal modeling [25]. Dynamic scene modeling with
3DGS typically involves a deformation field combined with efficient voxel encod-
ing and lightweight decoders, as demonstrated in LGS [14] and Endo-4DGS [10].
Endo-4DGS [10] utilizes monocular depth priors from Depth-Anything [29] with
a confidence-guided learning mechanism to address uncertainties in monocular
depth estimation, while Deform3DGS [30] employs learnable basis functions for
improved representation efficiency. Other methods integrate deformation fields
to model tissue motion, leveraging efficient encodings such as orthogonal feature
planes [27], regularization in MLPs [26], or Gaussian life-cycle mapping [22].
Although these methods improve the reconstruction speed, their limitations in
motion hierarchy modeling and geometric accuracy in terms of precise topology
and texture mapping hinder surgical applications.

Recent advancements in 3DGS and 4DGS have pushed the boundaries of
ER, yet critical limitations remain in dynamic surgical environments: (1) exist-
ing frameworks struggle to compensate for spatial and temporal inconsistencies
and to accurately model the complex, nonrigid deformations inherent in dynamic
tissue interactions; and (2) Gaussian radiance fields are highly sensitive to mi-
nor depth inaccuracies, resulting in artifacts in textured regions and unstable
primitive distributions [4]. Conventional scale-invariant depth losses prioritize
global alignment, often sacrificing the local geometric precision needed for fine
structural details. These challenges underscore the need for a more robust ap-
proach that we try to propose. Specifically, our contributions are as follows:
(1) We propose a dual-stage deformation modeling that robustly addresses
both multiview inconsistencies and dynamic tissue deformation via dual Score
Distillating Sampling (SDS) losses, enabling stable 3D reconstructions; (2) We
introduce a novel dual-scale hard and soft depth guidance framework that
enforces a dual-scale loss: a hard constraint component that anchors global geo-
metric consistency using absolute depth priors, and a soft constraint component
that adaptively weighs local depth gradients to refine fine-grained structural
details, thereby mitigating the sensitivity of Gaussian radiance fields to mi-
nor depth inaccuracies; (3) Upon evaluation on two dynamic real endoscopic
benchmarks and three static colonoscopy benchmarks, our proposed D4Recon
produces superior reconstruction qualities with a real-time rendering efficacy.
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Fig. 1: Overall workflow of D4Recon: Gaussians are initialized from input video,
followed by Gaussian deformation modeling (subsection 2.2). Finally, the Gaus-
sians are updated using our spatiotemporal SDS losses LSDS-S,LSDS-T (subsec-
tion 2.4) and dual-scale depth guidance loss LDDG (subsection 2.3).

2 Proposed Method

Given an input endoscopic video V = {It,Mt, Dt : t ∈ [0, T ]}, where for the tth
RGB frame It, Mt is its surgical tool mask and Dt is its depth map, we generate
a dynamic 3D Gaussian representation GDyn as ER output. In subsection 2.1,
we outline necessary preliminaries, followed by describing dynamic scene rep-
resentation in subsection 2.2. We then detail the dual-scale depth guidance in
subsection 2.3 and present our dual-stage spatiotemporal deformation modeling
in subsection 2.4. An overview of our workflow is shown in Figure 1.

2.1 Preliminaries of 3DGS

We model 3D static scenes using 3D Gaussian Splatting (3DGS) [11], represent-
ing the scene as a set of Gaussian primitives {G}, each defined by its center
µ, opacity α, color coefficients c, and a covariance matrix Σ. The Gaussian at
position p is formulated as G(p) ≈ exp[− 1

2 (p− µ)
TΣ−1(p− µ)]. To ensure posi-

tive semi-definiteness, Σ is decomposed as Σ = RSSTRT , where S is a scaling
matrix and R is a rotation matrix, stored as diagonal vector s and quaternion
vector q, respectively. Thus, each Gaussian is represented as G = {µ, s, q, α, c}.
For rendering, 3D Gaussians are projected to the 2D image plane using viewing
transformation V and the Jacobian J of the projective transformation, resulting
in 2D covariance Σ′ = JV ΣV TJT . The color C and depth D for pixel p are
then computed by blending the Gaussians in depth (d) order:

C =
∑
i

(α′
i

i−1∏
j=1

(1− α′
j))ci, D =

∑
i

(α′
i

i−1∏
j=1

(1− α′
j))di, (1)

where α′
i is the projected opacity of the ith Gaussian.
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2.2 Dynamic 3D Scene Representation
Gaussian Initialization: 3DGS typically relies on Structure from Motion (SfM)
point clouds for Gaussian initialization, yet in endoscopic videos—with limited
viewpoints, sparse textures, and dynamic lighting—SfM often produces inaccu-
rate point clouds that hinder precise initialization. Unlike [10, 15, 26], which rely
solely on SfM-derived data, we project tissue pixels into 3D space from frame
0 to create an initial point cloud. To address occlusions due to surgical tools,
we update tissue pixel information from subsequent frames, generating refined
image I ′, depth map D′, and surgical tool mask M ′ as follows: for each pixel p,
if M0(p) = 1 but Mt(p) = 0 for frame t, we update I ′ and D′ with values from
frame t, otherwise retaining the data from frame 0. The refined point cloud P ′

is computed as:

P ′ = {D′K−1
e K−1

i (I ′ ⊙ (1−M ′))}, M ′ = ∩tτ=0Mτ , (2)

where Ki and Ke are camera intrinsics and extrinsics, respectively.
Dynamic Gaussian Representation: We then model the deformable sur-
gical scene using a dynamic 3D Gaussian representation GDyn = Gt + ∆Gt,
where Gt is the static 3D Gaussian component at time t and ∆Gt encodes
spatiotemporal deformations. For this deformation encoding, we utilize a multi-
resolution encoder E comprising hex-planes Ω(u, v) and an MLP ψE , formu-
lated as E = {Ω(u, v), ψE} where (u, v) ∈ {(x, y), (x, z), (y, z), (x, t), (y, t), (z, t)},
yielding tth-frame features ft ← E(Gt). Here hex-planes serve as learnable 2D
feature grids defined over pairs of dimensions, and when combined with MLP,
form a multi-resolution encoder. We then deploy a multi-head decoder D =
{ψµ, ψs, ψq, ψα, ψc}, composed of five MLPs for deformed position, scaling, ro-
tation, opacity, and color. The deformed 3D Gaussian is represented as:

GDyn = {µ+ ψµ(ft), s+ ψs(ft), q + ψq(ft), α+ ψα(ft), c+ ψc(ft)}
= {µ+∆µ, s+∆s, q +∆q, α+∆α, c+∆c}.

(3)

2.3 Dual-scale Depth Guidance
3D Gaussian Splatting (3DGS) optimizes four parameters {µ, s, q, α} that col-
lectively influence the reconstructed depth. However, applying uniform regular-
ization to all parameters may lead to overfitting and blur, as monocular depth is
smoother than color. To preserve both geometric fidelity and visual clarity, we
selectively regularize only µ and α, which are the primary determinants of spatial
position and occupancy, while keeping s and q fixed to avoid introducing color
reconstruction artifacts. To enhance the shaping of Gaussian fields, we introduce
hard depth guidance (HDG) that leverages the global depth cues encoded in the
Gaussian centers µ. We assign a high opacity value β to all Gaussians and render
a “hard depth” DHDG primarily from the Gaussians nearest to the camera center
ρ along rays cast from pixel p, enforcing global depth consistency:

DHDG(p) =
∑
i

β(1− β)i−1∥ρ− µi∥2. (4)

Hard depth guidance alone is insufficient as it lacks opacity optimization, po-
tentially leading to semitransparent surfaces and hollow structures. To address
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this, we freeze µ to prevent undesirable shifts and introduce soft depth guid-
ance (SDG) to refine α while maintaining geometry. This leverages α’s role in
governing local depth cues through opacity modulation:

DSDG(p) =
∑
i

α′
i

i−1∏
j=1

(1− α′
j)∥ρ− µi∥2. (5)

We enforce alignment with monocular depth D using a norm-2 similarity loss:

LDDG(p) = ||DHDG(p)−D(p)||2 + ||DSDG(p)−D(p)||2. (6)

2.4 Dual-stage Deformation Modeling

Traditional 3DGS often relies on hand-crafted depth heuristics, which struggles
to resolve inherent scene ambiguity with multiview inconsistencies (e.g., non-
Lambertian surfaces, transient occlusions). To address them, we propose a de-
formation framework that disentangles geometric and temporal refinements via
two novel Score Distillation Sampling (SDS) objectives, leveraging the semantic
and structural priors of a pre-trained 2D diffusion model. To mitigate multi-
view conflicts and temporal flickering, we introduce two deformation fields: (1)
Spatial deformation field Ds that adjusts Gaussian positions to resolve static
multiview inconsistencies and (2) Temporal deformation field Dt that models
dynamic scene variations across time. These fields are jointly optimized with
our SDS losses, aligning with diffusion prior and preserving physical plausibility.
Multiview Consistency: For spatial refinement, we sample a camera pose
P̂i from the canonical trajectory distribution, freeze temporal dynamics (fix-

ing t), and render the scene via differentiable splatting: IP̂i

P̂i←−−−
splat

GDyn{µ +

Ds(µ), s, q, α, c}. We then perturb IP̂i
with Gaussian noise ϵ ∼ N (0, σ2I) to ob-

tain Iϵ
P̂i

and compute noise residual ϵϕ (ϕ denotes frozen diffusion weights). The
spatial SDS loss LSDS-S backpropagates gradients through deformation field Ds:

∇θsLSDS-S = EP̂i,ϵ,σ

[
w(σ)(ϵϕ − ϵ)

∂IP̂i

∂θs

]
; ϵϕ = Diffusion(Iϵ

P̂i
, P̂i, σ), (7)

where w(σ) is a noise-level-dependent weighting, and θs parameterizes Ds.
Temporal Consistency: To prevent degenerated spatial solutions (e.g., flat-
ness), we apply a temporal SDS loss LSDS-T that enforces coherence across sam-
pled time steps t ∼ [t0 −∆t, t0 +∆t]. Here, Dt deforms Gaussians to positions
µ + Dt(µ, t), and similar to Equation 7, LSDS-T penalizes deviations from the
diffusion prior when rendering dynamic sequences. Crucially, the spatial and
temporal fields are optimized alternately, decoupling high-frequency geometric
details (handled by Ds) from low-frequency motion (handled by Dt).

Unlike traditional SDS [19] that naively distills single-view semantics, our
disentangled formulation (1) explicitly models the static-dynamic duality of real-
world scenes and (2) leverages camera pose conditioning in the diffusion model
to resolve the inconsistency inherent in SDS. Finally, defining 1k=k mod 2, we
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formulate the overall loss as Ltotal = LDDG+1k LSDS-S+(1− 1k) LSDS-T. GDyn

at iteration k is updated as: Gk+1
Dyn ← Gk

Dyn − η∇Ltotal with learning rate η.
Unlike 4DGS [10, 25] that parameterizes space-time in a single volumetric

representation, our work initializes per-frame Gaussians and aligns them via
localized spatiotemporal updates with dual-scale depth guidance for efficient op-
timization. Hence, we categorize it as Dynamic3DGS, emphasizing its flexible
3D representation that incrementally adapts to temporal variations.

3 Experiments and Results
Datasets We evaluate D4Recon on five benchmark datasets, consisting of two
surgical datasets: StereoMIS [8] and EndoNeRF [24], and three static datasets:
Simulation [32], In-Vivo [17], and Phantom [2]. StereoMIS consists of 11 surgical
sequences captured with the da Vinci Xi system on in-vivo porcine subjects.
Following [22], we utilize two segments from videos P2_1 and P2_2. EndoN-
eRF comprises two prostatectomy cases with stereo-matched depth maps, com-
prising challenges like tool occlusion and non-rigid deformations. Both datasets
are split in 7:1 training and validation ratio, following [10]. We follow [3] for
the static datasets: Simulation with Unity-rendered colonoscopy sequences us-
ing RNNSLAM for depth and pose, In-Vivo with real colonoscopy videos at
270×216 resolution, and Phantom from C3VD with high-resolution sequences
(“cecum_t4_b”, “desc_t4_a”, “transt_t1_a”).
Implementation Details We adopt Adam optimizer for 3000 iterations with
learning rate η = 1.6× 10−3 and implement the pipeline using Python environ-
ment on an NVIDIA RTX4090 GPU with 24GB RAM. ArSDM [5] is utilized
as the pretrained diffusion network. β in Equation 4 is set to 0.95 following
validation. We follow previous works [10, 15, 30] for other settings to maintain
a fair comparison. Subsection 2.2 is replaced with standard 3DGS representa-
tion for static scene reconstruction. Our performance is evaluated in terms of
photorealism (PSNR and SSIM) and geometric consistency (LPIPS).
3.1 Comparison with State-of-the-art (SoTA)
Table 1 summarizes the comparison of D4Recon with the existing SoTA on two
surgical datasets. Notably, LerPlane [28] exhibits suboptimal performance, likely
due to its limited NeuralPlane-based representation which inadequately captures
the intricate, dynamic tissue deformations. NeRF-based methods like EndoSurf
[31] achieve moderate metrics but are impractical for real-time use due to slow
inference and extended training. LGS [14] improves time using lightweight 4DGS,
but records poor metrics, likely due to oversimplified Gaussian representation
without fine deformation details. SurgicalGaussian [26] improves quality but suf-
fers from low FPS and longer times, indicating heavy computational overhead.
Other 4DGS-based methods like Endo-4DGS [10] and EndoGaussian [15] al-
though deliver satisfactory performance, their LPIPS and speed remain subopti-
mal. Deform3DGS [30] offers competitive quality using deformable 3DGS, yet its
higher training time reflects inefficiencies in dynamic tissue handling. EH-SurGS
[22] also provides high photometric quality in parts, but overall computational
demands and inconsistent performance reduce its practical appeal. In contrast,
our approach integrates dual-stage spatiotemporal deformation modeling and
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Table 1: Quantitative evaluation of D4Recon on EndoNeRF and StereoMIS
datasets. The best & second-best performances are highlighted in red & blue.

EndoNeRF-Cutting EndoNeRF-Pulling Average StereoMIS Average
Method Category PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ FPS↑ Time(s)↓ PSNR↑ SSIM↑ LPIPS↓ FPS↑ Time(s)↓

LerPlane-32K [28] NeuralPlane 34.66 0.923 0.071 31.77 0.910 0.071 100 240 24.12 0.814 0.327 100 255
EndoSurf [31] NeRF 34.98 0.953 0.106 35.00 0.956 0.120 0.04 2.5e4 30.78 0.856 0.294 0.05 2.5e4

LGS [14] 4DGS 36.21 0.937 0.088 35.89 0.930 0.089 188 122 24.47 0.831 0.301 190 145
Endo-4DGS [10] 4DGS 36.56 0.955 0.032 37.85 0.959 0.043 100 240 33.85 0.894 0.165 100 420

EndoGaussian [15] 4DGS 38.29 0.962 0.058 37.31 0.958 0.070 193 120 34.37 0.899 0.158 190 130
SurgicalGaussian [26] 3DGS 37.51 0.961 0.062 38.78 0.970 0.049 82 165 30.09 0.845 0.309 86 182

Deform3DGS [30] 3DGS 37.86 0.958 0.059 37.94 0.959 0.061 335 71 34.71 0.904 0.163 332 79
EH-SurGS [22] 3DGS 39.91 0.972 0.034 38.72 0.963 0.062 383 101 34.91 0.906 0.166 365 120

Ours Dynamic3DGS 40.13 0.978 0.029 39.98 0.986 0.049 336 122 35.03 0.910 0.155 335 120

Table 2: Quantitative evaluation of D4Recon on three static datasets.
Simulation In-Vivo Phantom

Method Category PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NeRF [18] NeRF 35.29 0.92 0.14 18.93 0.67 0.43 32.10 0.81 0.39
REIM-NeRF [20] NeRF 32.22 0.82 0.33 18.94 0.65 0.45 31.66 0.78 0.22
Nice-SLAM [34] SLAM 35.61 0.84 0.31 20.37 0.77 0.32 28.08 0.88 0.29
Endo-Depth [21] DepthCNN 38.88 0.93 0.13 23.51 0.79 0.25 30.18 0.86 0.26
Endo2DTAM [9] SLAM+3DGS 35.62 0.85 0.22 23.19 0.76 0.28 29.93 0.81 0.28
EndoGSLAM [23] SLAM+3DGS 39.48 0.92 0.10 25.59 0.81 0.19 32.63 0.89 0.21

GPancake [3] RNNSLAM+3DGS 40.34 0.97 0.05 26.25 0.83 0.21 32.31 0.90 0.20

Ours Dynamic3DGS 46.79 0.99 0.02 30.63 0.92 0.14 37.82 0.94 0.15

dual-scale depth guidance to achieve high-fidelity and geometrically consistent
outputs. These findings are well-supported by our results in Figure 2.

In Table 2, our D4Recon framework demonstrates a large improvement mar-
gin compared to all the latest approaches, across the three static benchmark
datasets. NeRF [18] is limited by its static scene assumptions and slow volu-
metric rendering, while REIM-NeRF [20] extends NeRF to dynamic settings
but remains vulnerable to depth estimation errors under tissue deformations.
Nice-SLAM [34] provides robust geometric fidelity yet falls short in capturing
fine texture details, leading to suboptimal perceptual quality. Endo-Depth [21]
and Endo2DTAM [9] offer reasonable reconstructions but compromise between
computational efficiency and fidelity, particularly in dynamic environments. Al-
though EndoGSLAM [23] and GPancake [3] leverage 3DGS+SLAM, they strug-
gle with irreversible tissue deformations and noise, especially in phantom data.

In contrast, as evident in Figure 2, our approach integrates dual-stage de-
formation modeling to enforce spatiotemporal consistency and address flickering
artifacts (row 1), enhances depth accuracy in occluded or deformable regions
(row 2,3) and refines structural coherence to eliminate surface distortions (row
4,5). Collectively, we yield high-fidelity and geometrically consistent reconstruc-
tions, as evidenced by the sharper tissue boundaries and stable geometry in
Figure 2.

3.2 Ablation Results
We conduct an ablation study (Table 3) to assess the contributions of our pro-
posed components. Experiment (a) represents the baseline without any enhance-
ments, resulting in the lowest performance. In (b), adding the standard SDS loss
[19] alone yields modest PSNR and SSIM gains, but with degraded perceptual
quality (i.e., higher LPIPS), suggesting that SDS loss in isolation is insufficient.
The incorporation of temporal supervision through LSDS-T in (c) leads to sig-
nificant improvements in metrics, emphasizing the importance of capturing dy-
namic tissue interactions. Further adding spatial supervision via LSDS-S in (d)
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Fig. 2: Qualitative comparison of reconstruction quality.

Table 3: Ablation experiment of D4Recon on surgical reconstruction datasets.
Mean values of cutting and pulling scenes are reported for EndoNeRF dataset.

Exp# DHDG DSDG DAny LSDS-S LSDS-T LSDS
EndoNeRF StereoMIS

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

(a) 31.03 0.886 0.129 25.63 0.766 0.331
(b) ✓ 32.19 0.903 0.853 26.71 0.781 0.305
(c) ✓ 36.67 0.945 0.077 29.27 0.820 0.214
(d) ✓ ✓ 38.42 0.968 0.052 31.38 0.886 0.176
(e) ✓ ✓ ✓ 38.89 0.970 0.049 32.13 0.890 0.171
(f) ✓ ✓ ✓ 39.69 0.973 0.045 33.91 0.902 0.168
(g) ✓ ✓ ✓ ✓ 40.06 0.982 0.039 35.03 0.910 0.155

refines the structural fidelity of the reconstruction, as indicated by a notable per-
formance boost, justifying the importance of dual-stage deformation modeling.
Experiment (e) shows that integrating depth cues from Depth-Anything [29],
combined with spatiotemporal supervision leads to further quality gains. Sub-
sequent introduction of SDG-based depth guidance (DSDG) in (f) stabilizes the
reconstruction substantially by providing robust local depth cues, particularly in
areas affected by deformations. Finally, the full integration DHDG in (g) achieves
the best performance, demonstrating the efficacy of our proposed components.

4 Conclusion
We introduce D4Recon—a novel endoscopic reconstruction framework that com-
bines 3D Gaussian Splatting with dual-stage spatiotemporal deformation mod-
eling and dual-scale depth guidance. Our method significantly enhances recon-
struction fidelity with a high rendering speed across both static and dynamic sce-
narios by employing a dual-stage SDS loss that integrates spatial deformations
with temporal dynamics and robust hard and soft depth guidance, demonstrat-
ing strong potential for intraoperative surgical applications. Future work will
focus on incorporating physics-informed priors for biomechanical consistency
and optimizing real-time adaptability for diverse endoscopic domains.
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