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Abstract. Multimodal medical imaging provides critical data for the
early diagnosis and clinical management of clear cell renal cell carcinoma
(ccRCC). However, early prediction primarily relies on computed tomog-
raphy (CT), while whole-slide images (WSI) are often unavailable. Con-
sequently, developing a model that can be trained on multimodal data
and make predictions using single-modality data is essential. In this pa-
per, we propose a multimodal hypergraph guide learning framework for
non-invasive ccRCC survival prediction. First, we propose a patch-aware
global hypergraph computation (PAGHC) module, including a hyper-
graph diffusion step for capturing correlational structure information and
a control step to generate stable WSI semantic embeddings. These WSI
semantic embeddings are then used to guide a cross-view fusion method,
forming the hypergraph WSI-guided cross-view fusion (HWCVF) to gen-
erate CT semantic embeddings, improving single-modality performance
in inference. We validate our proposed method on three ccRCC datasets,
and quantitative results demonstrate a significant improvement in C-
index, outperforming state-of-the-art methods. The source code is avail-
able in https://github.com/iMoonLab/PAGHC.
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1 Introduction

Survival prediction has gained significant attention in medical imaging, aiming
to model survival duration from imaging data [6,23,27]. WSIs, the gold stan-
dard in diagnosis, offer high-resolution visualization of tumor morphology and
microenvironment, but require tissue biopsy and expert pathologists [4, 7, 24]. In
contrast, CT is a non-invasive 3D imaging modality providing valuable tumor
information, though it lacks the detailed pathological data needed for accurate
subtype classification [20, 26]. This underscores the need for methods combining
the rich pathological insights of WSIs with the non-invasive nature of CT. Early
ccRCC prediction often relies on CT scans, as WSIs are commonly unavailable.
Thus, we propose a method to obtain accurate WSI semantic embeddings and
guide CT training, enabling inference for patients with either WSI or CT data.
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Significant efforts have been dedicated to managing these. For WSI, images
are segmented into patches, and correlations among patches are captured using
multiple instance learning (MIL) [10, 16, 19, 25], graph neural networks (GNN)
[1,15], or hypergraph neural networks (HGNN) [3]. These methods encapsulate
tumor morphology and tissue structure information into embeddings for survival
prediction. For CT, radiomics and deep learning models extract morphological,
textural, and computer vision features to create CT embeddings. Despite these
advancements, two primary challenges remain. First, how to accurately construct
and utilize patch-level correlations globally within WSIs to achieve stable and
accurate embeddings for survival prediction. Second, how to leverage rich patho-
logical information from WSI embeddings during training to enhance CT-based
models, ensuring accurate cross-view relationships during inference.

To tackle these challenges, we propose a multimodal hypergraph-guided learn-
ing framework for non-invasive ccRCC survival prediction. We propose a patch-
aware global hypergraph computation method to generate stable WSI semantic
embeddings for accurate survival prediction. It consists of two key steps, namely
a diffusion step to capture global hypergraph correlations through information
diffusion among patches, and a control step to ensure embedding stability. Using
the stable WSI embedding, we apply a cross-view fusion method to achieve pre-
cise CT survival predictions, guided by WSI data. Notably, our method requires
only WSI data during training, with CT data used only in inference. Experi-
ments on three datasets demonstrate consistent and significant improvements
over existing methods. The main contributions of this paper are as follows:

— For stable WSI embedding and effective survival prediction, we propose a
patch-aware global hypergraph computation module, including a diffusion
step to capture high-order correlations and a control step for external effects.

— Powered by the stable WSI embedding, we propose a cross-view fusion
method, guided by WSI during training, to achieve accurate survival predic-
tion based on CT data effectively, with WSI not required during inference.

— The proposed method is validated on three ccRCC datasets. The proposed
method consistently outperforms the state-of-the-art methods by a large
margin for both WSI-based and CT-based survival prediction tasks.

2 Method

The framework is illustrated in Fig. 1. We first construct a hypergraph from
WSI patch features and input them into the PAGHC module. Multiple PAGHC
layers capture high-order patch correlations, producing a stable WSI embedding
for risk prediction. Next, axial, sagittal, and coronal CT features are extracted,
and the HWCVF method generates a CT embedding for risk prediction. During
training, the CT embedding is supervised by the WSI embedding, integrating
hypergraph correlations and WSI modal information. In the inference phase, no
WSI data is required, allowing direct risk prediction using only CT features.
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Fig. 1. Nlustration of multimodal hypergraph guide learning. 1) The WSI-based sur-
vival prediction model utilizes patch features and a constructed hypergraph for patch-
aware global hypergraph computation, producing the WSI embedding for risk predic-
tion. 2) The CT-based model employs a cross-view fusion method, integrating three
features to obtain a WSI-supervised CT embedding for risk prediction. 3) During in-
ference, no WSI data is required, and the CT model directly predicts the risk.
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2.1 Survival Prediction on WSI

Given a patient ¢ with the corresponding WSI, CT scan, survival time ¢;, and
survival status §;, we first apply the OTSU [18] to filter out the background
of the WSI and randomly select N, patches. Each patch is represented us-
ing a neural network pre-trained on a computer vision dataset. As a result, the
patient’s WSI patch-level visual semantic features are represented as X() =
[X{,Xg, " ,x},w“_] € RNwsiXduwsi where d,,; represents the feature dimension.
The survival prediction model consists of three main components, namely hy-
pergraph construction, PAGHC for WSI embedding, and risk prediction.

In the hypergraph construction phase, high-order correlations among patches
are captured by utilizing their visual semantic features to form hyperedges. Each
patch is treated as a vertex v;, and for each vertex, a hyperedge is constructed
using the k-nearest neighbors (kNN) algorithm, with the Euclidean distance
between patch features as the metric dis(v;,v;) = ||x; —X;|2. The hypergraph is
represented as H = (V, ), where V and & are the sets of vertices and hyperedges,
and the incidence matrix H € {0, 1}IVIXI€Il has entries H, . = I(v € ¢). The
degree of a vertex v is defined as d(v) = ) ¢ Hy e, and the degree of a hyperedge
eisy(e) = >, ey Hue. The diagonal degree matrices for vertices and hyperedges
are denoted as D,, = diag(d) and D, = diag(v), respectively.

Following hypergraph construction, we introduce the PAGHC layer to cap-
ture high-order correlations among WSI patches and generate a stable WSI
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embedding. The PAGHC layer consists of two steps, namely a hypergraph dif-
fusion step and a control step. In this way, each patch can capture long-range
information while avoiding the over-smoothing problem. In the diffusion step, we
perform a two-stage process, first diffusing from vertices to hyperedges, and then
from hyperedges back to vertices to capture patch correlations. Specifically, the
input feature X*) is diffused to the hyperedge feature ng) by multiplication
with HT, and then the hyperedge feature is diffused back to the vertex feature
Xg,k) by multiplying with H. These steps are expressed as:

ng) = De_lHTX(k) and Xg,k) = DngXEk)- (1)

To prevent over-smoothing in dense models, the control step operates directly on
each vertex, managing external influences to maintain stability and robustness
of the hypergraph computation. The output of the PAGHC layer is the weighted
feature-wise residual between the input and the computed results, expressed as:

X = X0 L (XF) and XEFD = oX®) 4 (1 — )X P, (2)

where [(+) represents the control function computed by an MLP, and « represents
the keep-rate, controlling the influence of the input feature in each layer.

After K layers of PAGHC, the final output is denoted as XK+, The WSI
embedding X..; is computed by self-attention aggregation of XK+ given
by Xwsi = Norm((X(K+1)WZ)si)(X(K—i_l)wﬁ)si)TW&si)TX(K+1)’ where WZ}si’
Wk € RwsiXdaten and W? . € RNwsi*1 are learnable weight matrices corre-
lated with the self-attention method, respectively, and Norm(-) represents nor-
malization. The resulting WSI embedding is passed through a linear layer to
predict the WSI risk p(z) for patient 7. The training loss function is the negative

wsi

Cox log partial likelihood (NLL) loss [14], defined as:

M
Losi =L =3 6:(—p +1og Y exp(pli)), (3)
=1

jefst;<ti}

where M is the batch size, and ¢; indicates whether the i-th sample is censored.

2.2 Survival Prediction on CT

Given the CT scan of patient i, we first extract multi-view features from the
axial, sagittal, and coronal planes using a pre-trained neural network, resulting
in Yauzial, Ysagittals Y coronal € RNet xXder respectively, where N, d. represent
the number of slices and feature dimension, respectively. The survival prediction
model, HWCVF, consists of two main steps, namely cross-view fusion and aggre-
gation to generate the CT embedding, followed by risk prediction. The details
of this process are outlined as follows.

To obtain an accurate CT embedding, we fuse multi-view information through
three cross-view fusion modules. For each module, we set one view’s features as
the main features and the other two as auxiliary features. For instance, in the
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first module, the axial feature Y .;q; serves as the main feature F7(7}u)zin7 while
the sagittal and coronal features Yqgittar @1d Yeoronat are auxiliary features

F((lh)ml and Fl(llu)m, respectively. The fusion process uses two attention modules to
combine the main and auxiliary features. A linear perceptron is then applied to
the main feature to capture relevant patterns. The fused features from all three
directions are computed as follows for the i-th fusion module:

FO = 10 (B0, + AttnF (O (B L) + Aty (B, FO,), (4
where lg%/ is a self-perceptron function computed by a linear layer, and AttnF(-, -)
is the attention fusion function defined as AttnF (Foain, Faur) = Norm((Fain
W) (Fauz WF) ) (Fouz WY). Here, W, Wk ¢ RdectXdatinr and WY € Rt Xdet
are learnable parameters, respectively. After obtaining f‘(i), we add a feature-
wise residual and apply a perceptron layer to the mixed features, producing the
final output F( of the cross-view fusion. The outputs of the three modules are
averaged at the slice level, and summed to form the overall CT embedding y ;.

Given the CT embedding, we aim to predict the patient’s risk powered by the
stable WSI embedding. To begin, we compute the credibility of each CT in the
batch by introducing Gaussian noise to the axial, sagittal, and coronal features.
For patient i, the change in CT embedding A; is calculated under Gaussian
noise N(o,X), and the credibility w; is given by w; = A;/ (Zf\il A;), where
Ai =Een(om) ||y£? —yﬁ? |l2- In prediction, the CT embedding is passed through
a linear layer to predict the CT risk pfjii for patient i. WSI-guided supervision
during training ensures that the WSI and CT embeddings are aligned in both
angle and distance, as reflected in the following loss function:

(@) (@)
Lo = ol +(0-0m) Y GmﬁT”&H%M&y%@,
i~op(si|wi) ”sti” ”yct ||
where Lglcl? represents the NLL loss similar in Eq.(3), p(s;|w;) is a Bernoulli
distribution on w;, and au,, oy, g are hyperparameters controlling the contri-
butions of NLL loss, angular similarity, and distance, respectively. Notably, since
WSI-guided CT only impacts the loss function, during inference, CT risk can be
predicted directly from CT data without requiring WSI input.

3 Experiments Table 1. Dataset statistics.

3.1 Datasets Datasets KIRC H1 H2

The proposed method is evaluated on KIRC, #Patients 505 344 288
a public cancer dataset from The Can- #WSIs 505 344 288
cer Genome Atlas (TCGA) [11], and two SST(Days) 11 = 65 251
ccRCC datasets from cooperative hospitals, the LST(Days) 4,537 3,516 3,900
Guizhou Provincial People’s Hospital (H1) and C-rate(%) 66.14 88.66 87.85
the Affiliated Hospital of Guizhou Medical Uni-

versity (H2). Detailed statistics of datasets are presented in Table 1.
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3.2 Compared Methods

We compare the proposed method with 7 WSI-based and 5 CT-based survival
prediction methods. The experimental code for these methods is either sourced
from published implementations or reproduced following detailed descriptions
from the respective papers. The specifics of these methods are outlined below.

The WSI survival prediction methods are categorized into three groups. The
first group comprises MIL-based methods, including four popular architectures,
namely MIL-Attention [10], DTFD [25], TransMIL [19], and CLAM [16]. MIL-
Attention employs MIL by treating each patch as an instance. DTFD intro-
duces a two-layer MIL framework for improved task-specific feature extraction.
TransMIL integrates a Transformer with MIL to incorporate both morpholog-
ical and spatial information, while CLAM uses attention to identify important
sub-regions and employs instance-level aggregation for feature refinement. The
second group consists of two GNN-based models, namely DeepGraphSurv [15]
and Patch-GCN [1]. DeepGraphSurv models global graph topology to extract
WHSI features, while Patch-GCN aggregates instance-level histological features
to model both local and global graph structures. The final group includes the
HGNN-based model, HGSurvNet [3], which captures high-order correlations be-
tween patches and constructs a global WSI representation using a hypergraph.

The CT survival prediction methods are divided into four categories, namely
the multi-layer perceptron method (MLP), a GNN-based method (GCN [13]),
an HGNN-based method (HGNN [5]), and two transfer learning methods (DDC
[22] and KLGDA [17]).

3.3 Implementation

From each WSI, we randomly extract N = 2,000 patches, and their semantic
features are extracted using the EfficientNet [21] model pre-trained on Ima-
geNet [2]. The number of patches affects WSI sampling coverage. Generally,
more patches improve performance at the cost of increased computation. For
each CT scan, we use the ResNet [8] model pre-trained on ImageNet to extract
axial, sagittal, and coronal features, respectively. All models are trained for 200
epochs using stochastic gradient descent with a batch size of 16, a momentum
of 0.9, a learning rate selected from {10~!,1072, 1073}, and weight decay values
from {5 x 107%,1074,5 x 1075}. The dataset is randomly split into five-folds,
and both the proposed and compared methods employ five-fold cross-validation.
The mean and standard errors are reported.

3.4 Results and Discussions

The survival prediction C-index results [9] for WSI and CT data are presented in
Tables 2 and 3, respectively. Our method consistently outperforms the compared
methods across multiple datasets. For WSI-based inference, the C-index values
on the KIRC, H1, and H2 datasets are 0.74, 0.83, and 0.82, respectively. Guided
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Table 2. C-index results for different WSI-based methods on KIRC, H1, and H2.

Methods

KIRC

Hi1

H2

Average

MIL-Attention [10]

0.7110-0.0168

0.7949+0.0436

0.7766=+0.1190

0.7608-0.0360

DTFD [25] 0.698140.0135 0.752440.0863 0.7884+0.1249 0.7463+0.0371
TransMIL [19] 0.6814i0,0234 0-7533:I:0.0696 0.7967i0_0701 O.7438i0,0476
CLAM [16] 0.6267;&00132 0.7154:{:0.0471 07010:{:0‘0469 0.6810:&00389

DeepGraphSurv [15]

0.6227+0.0114

0.6845+0.0563

0.717210.0584

0.6748+0.0392

PatCh—GCN [1] 0.6359i0,0324 0-7575:I:0,0594 0~7344j:0.0911 O.7093i0,0527
HGSurvNet [3] 0.714410.0316 0.8004+0.0502 0.7881+0.0811 0.7676+0.0380
PAGHC(OHI‘S) 0~7434i0.0167 0.8320i0,0227 0-8229i040676 0~7994i0.0398

Table 3. C-index results for different CT-based methods on KIRC, H1, and H2.

Methods KIRC H1 H2 Average

MLP 0.5698+0.0271  0.6230+0.0503 0.6300+0.0651 0.6076+0.0269
HGNN [5] 0.5963+0.0420 0.649310.0320 0.650410.0501 0.6320+0.0253
DDC [22] 0.6491+10.0613 0.6863+0.0592 0.6730+0.0799 0.669510.0154

HWCVF(OU.I"S) 0.6682i00537 0-7135i0.0598 0~7118i0.0463 0.6978i()‘0210

from WSI by hypergraph computation, our CT-based method achieves C-index
values of 0.66, 0.71, and 0.71 on the same datasets, respectively.

In survival prediction using WSI, our method outperforms the MIL-based
methods. Most MIL-based methods (MIL-Attention, DTFD, and CLAM) ne-
glect patch correlations, limiting the transfer of correlational information. In
contrast, the Transformer-based MIL method (TransMIL) holds redundant in-
formation by modeling the correlation between fully connected patches. Unlike
graph edges, hyperedges can connect two or more vertices as a generalized form
of edges, allowing our model to capture high-order correlations more accurately.
PAGHC and HGSurvNet are hypergraph-based methods, whereas DeepGraph-
Surv and Patch-GCN are graph-based approaches. The results show that hyper-
graph methods with high-order connections outperform graph methods. Com-
pared to HGSurvNet, our PAGHC module integrates both diffusion and control
steps, increasing layers and facilitating more stable global information percep-
tion, as opposed to HGSurvNet relying only on local patch features.

Our method HWCVF outperforms MLP, GCN, and HGNN by the WSI-
guided PAGHC during training, capturing global patch-aware WSI information
by the hypergraph and overcoming the limitations of single-modality CT mod-
els. Unlike transfer learning methods such as DDC and KLGDA, which rely
on selecting an appropriate kernel or similar distribution difference between the
source and target domains, our method performs better when there are radio-
logical differences in multimodal data such as WSI and CT.

We select one method each from the MIL-based, GNN-based, and HGNN-
based categories to compare the KM estimation curves [12], as shown in Fig. 2.
The results demonstrate that our method effectively distinguishes between low-
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Fig. 2. The KM estimation curves of four methods. The X-axis is survival time/day.

Table 4. Experimental comparison of our method on different settings.

Guided Model Guided Loss Dataset
Patch-GCN HGSurvNet PAGHC Angle Distance KIRC H1 H2
v v 0.6276+0.0710 0.6520+0.0778 0.6608+0.0653
v v 0.6397+£0.0631  0.681210.0527 0.7001+0.0792
v v/ 0.644210.0607 0.6798+0.0625 0.6801+0.0693
v 4 0.6638+0.0415 0.703210.0580 0.704210.0521
v v 0.668210.0537 0.713510.0598 0.7118.0.0463

risk patients and high-risk patients. In addition to the best C-index, our method
also has the best binary discrimination ability.

3.5 Ablation Studies

We perform ablation experiments on three datasets to evaluate the impact of
different WSI guidance models and loss functions, with results shown in Table
4. Our proposed PAGHC outperforms other methods, especially Patch-GCN,
demonstrating that high-order correlations, when used to guide CT model train-
ing, produce better performance compared to graph correlational models. Fur-
thermore, PAGHC provides global patch-level perception, beating HGSurvNet,
which only captures local patch correlations. Finally, we analyze the individual
effects of angle loss and distance loss, showing that their combination generates
the best performance, highlighting their complementary roles in WSI guidance.

4 Conclusion

We propose a multimodal hypergraph guide learning framework for non-invasive
ccRCC survival prediction. We propose the PAGHC, which consists of a diffusion
step for information transfer between vertices and hyperedges, and a control step
that ensures stable capture of long-distance correlations globally. By leveraging
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patch-aware global hypergraph computation, it effectively captures high-order
correlations between patches, leading to improved WSI semantic embeddings
for accurate survival prediction. Additionally, we propose a WSI-guided survival
prediction model based on CT data, where stable WSI embedding guides the
model during training to indirectly capture high-order correlations and modal
information, but WSI is not required during inference for accurate prediction.
Experimental results on three ccRCC datasets show that our method outper-
forms state-of-the-art methods.
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