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Abstract. Interpolating missing data in k-space is essential for acceler-
ating imaging. However, existing methods, including convolutional neu-
ral network-based deep learning, primarily exploit local predictability
while overlooking the inherent global dependencies in k-space. Recently,
Transformers have demonstrated remarkable success in natural language
processing and image analysis due to their ability to capture long-range
dependencies. This inspires the use of Transformers for k-space inter-
polation to better exploit its global structure. However, their lack of
interpretability raises concerns regarding the reliability of interpolated
data. To address this limitation, we propose GPI-WT, a white-box Trans-
former framework based on Globally Predictable Interpolation (GPI) for
k-space. Specifically, we formulate GPI from the perspective of annihi-
lation as a novel k-space structured low-rank (SLR) model. The global
annihilation filters in the SLR model are treated as learnable parame-
ters, and the subgradients of the SLR model naturally induce a learnable
attention mechanism. By unfolding the subgradient-based optimization
algorithm of SLR into a cascaded network, we construct the first white-
box Transformer specifically designed for accelerated MRI. Experimental
results demonstrate that the proposed method significantly outperforms
state-of-the-art approaches in k-space interpolation accuracy while pro-
viding superior interpretability.
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1 Introduction

Magnetic resonance imaging (MRI) is a cornerstone clinical imaging modality,
widely recognized for its non-invasive nature, absence of ionizing radiation, and
exceptional soft tissue contrast. However, the inherently prolonged acquisition
time imposes significant practical limitations, often requiring the acquisition
of only partial k-space data [11,19]. Consequently, advanced reconstruction al-
gorithms are employed to recover high-quality images from these incomplete
measurements [16, 1]. A central challenge in MRI reconstruction is the accurate
prediction of missing k-space data.

The efficacy of k-space interpolation methods fundamentally relies on the
assumption that missing k-space data can be reliably predicted [6]. Traditional
approaches, such as those based on image sparsity [19, 20, 28], phase smooth-
ness [12,26,15,8,9], and coil sensitivity smoothness [24,23], have enabled the
estimation of missing k-space data from local neighboring information [27,6,
21]. However, these assumptions often do not hold rigorously in practical sce-
narios. When these assumptions are violated, the predictability of k-space data
transitions from a localized interpolation problem to a more complex global de-
pendency, leading to significant errors and degraded image quality.

Recent advancements have explored deep learning (DL)-based methodologies
for k-space interpolation [10, 4, 34, 2, 5|. Notably, studies such as [22, 13, 18] have
replaced the linear interpolation in traditional methods with nonlinear convolu-
tional neural networks (CNNs), leveraging large-scale datasets to enhance inter-
polation accuracy. Despite their effectiveness in capturing local structures, CNNs
inherently possess a limited receptive field, making them insufficient for model-
ing long-range dependencies in k-space. This limitation highlights the need for
alternative approaches capable of capturing global relationships within k-space.

Transformer-based models [29] have shown remarkable success in capturing
long-range dependencies through self-attention mechanisms and fully connected
layers, making them highly promising for k-space interpolation. However, exist-
ing Transformer-based approaches [17,34,31, 7] typically function as black-box
models, lacking theoretical interpretability, which raises concerns regarding their
reliability in k-space interpolation tasks. A significant advancement by Yu et
al. [33] introduced a white-box Transformer for image classification, optimiz-
ing sparse rate reduction and providing a theoretical foundation for multi-head
self-attention in terms of encoding efficiency. This work also links self-attention
mechanisms to iterative optimization algorithms. Although the concept of sparse
rate reduction is not directly applicable to k-space interpolation, this insight in-
spires the development of a novel, interpretable white-box Transformer tailored
to the global interpolation properties inherent in k-space.

In this paper, we introduce a novel k-space structured low-rank (SLR) model,
formulated from the perspective of globally predictable interpolation (GPI) in
k-space through annihilation. Within this framework, the annihilation filters
are defined as learnable parameters, and the subgradients of the SLR model
naturally induce a learnable attention mechanism. By unfolding the subgradient-
based optimization process for SLR-based k-space interpolation into a cascaded
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network, we develop a white-box Transformer specifically designed for k-space
interpolation.

The main contributions of this paper are as follows: (1) Interpretable white-
box Transformer for MRI reconstruction: We introduce the first theoretically
grounded white-box Transformer model specifically designed for MRI reconstruc-
tion. (2) Effective modeling of global dependencies: Unlike conventional CNN-
based k-space interpolation methods, the proposed Transformer model effec-
tively captures long-range dependencies within k-space, enabling more accurate
interpolation of missing data. (3) Comprehensive experimental validation: The
proposed approach is trained and evaluated on MRI datasets, and benchmarked
against state-of-the-art methods. Experimental results demonstrate that the pro-
posed GPI-WT consistently outperforms competing approaches across various
undersampling patterns, achieving superior performance in both qualitative and
quantitative assessments.

2 Methods

2.1 Globel White-box Transformer Reconstruction Model

For parallel MRI, the forward model of k-space measurements can be mathe-
matically represented as follows:

y = Mﬂk+na (1)

where k = [ki,...,ky,] and y € CN1*N2XNe denote the multi-coil fully sampled
k-space data and the undersampled k-space data, respectively, with N, > 1 coils.
n represents the noise. The sampling pattern Mg € CN1*N2XNe g et to 1 at the
sampled positions and 0 otherwise. We assume that the missing k-space data in
y can be reliably predicted, which forms the basis for accurately reconstructing
k from y.

The SLR model, conceptualized from the perspective of globally predictable
interpolation in k-space through annihilation, can be formulated as a summa-
tion Zthl | H(k,d)sp||%, where H represents the Hankelization operation, d is
the window size used for sliding over the data, and s; are the annihilation fil-
ters [32]. In this framework, we consider the globally predictable and interpo-
lated annihilation dependencies in k-space, thus d is chosen to match the size
of the k-space data. A well-established result is that | H(k, d)ss]|% = [|Qrk|%
where Qj, denotes the Hankel transformation of the annihilating filter s; [22].
By leveraging the equivalence between the Frobenius norm and the trace of a
matrix || X]|% = Tr(X*X), the SLR constraint ||Qpk||% can be reformulated as
Tr [(Qrk)" (Qrk)].

To further refine the SLR model, we introduce a penalty function p. applied
to Qk, extending the SLR constraint to:

m

R (k; Q) : Z ((Qrk)" (Quk))] (2)
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where p.(X) = UDiag(p,(01), ..., py(0r))V* and o; denotes the singular values
of X. In this work, we adopt a sparse prompting function

p~(X) := Udiag(ln(1 +v01),...,In(1 + yo,)) V™.

In traditional methods, Qp is obtained by applying Hankelization to low-
dimensional filters sj, leveraging the local predictability of k-space. This ap-
proach involves a small number of parameters, which can typically be estimated
from calibration data. However, in our method, s, is treated as a global annihi-
lation filter with dimensions matching those of the k-space data k, resulting in
a substantially larger parameter space. This increased complexity makes it diffi-
cult to accurately estimate s, using calibration data alone. To address this, we
relax the Hankel structural constraint on Qj, and define it as a set of learnable
parameters, allowing it to be directly learned from large datasets.

On the other hand, the subgradient of the specially designed SLR model (2)
can be approximated as the following structure:

H
ViR (k; Q) = D VicTr [In T+ (Quk)” (Quk))]
1

=
I

[
M=

VicInDet [(I+7(Qrk)" (Qrk))]

>
Il
—
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=
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(=~

7Y QiQuk (I+7(Qrk)" (Qrk)) ™

h

1
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~ ok — o Z Q;,Qnksoftmax ((Qrk)" Qrk),
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where the last approximate equality follows from reference [33]. Based on the
above analysis, the subgradient of (2) can fundamentally be interpreted as a
multi-head subspace self-attention (MSSA):

SSA(K|Qu)
MSSA(k|Qqmy) == *1Q7, .., Q}] : ; (4)
SSA(k|Qm)

where subspace self-attention (SSA) is defined as

SSA(K|Qp) := Quksoftmax ((Quk)” Quk) . (5)

Unlike conventional Transformers, the MSSA mechanism utilizes a single matrix
to derive the Query, Key, and Value representations in the attention mechanism
of a white-box Transformer, where Q = K = V = Qk. Therefore, we derive an
interpretable white-box attention mechanism through the SLR model (2).
Based on the white-box attention mechanism constructed above, by unfold-
ing the subgradient-based optimization algorithm for the (2)-regularized k-space
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Fig. 1. (a) Schematic of the our proposed unfolded network. (b) Diagram of window
partitions. Smoothing filter w is applied to facilitate the computation in k-space.

interpolation model, we derive a cascaded white-box Transformer network specif-
ically tailored for k-space interpolation. In particular, the (2)-regularized k-space
interpolation model can be formulated as follows:

1
min iHMQk —ylI3 + MR (k; Qi) + A2ll(G — D)3, (6)

It is worth noting that, considering that the global predictability enforced by
(2) may weaken local dependencies, we have retained a local predictability term
(G —I)k||3 in the above model. Here, G represents the local linear interpolation
kernel estimated by SPIRIiT [21]. The parameters A\; and Ay are regularization
coefficients. The gradient descent method for (6) yields a cascaded white-box
Transformer, as detailed below:

k' = (1-A\ py)k' —uGDC(K', y) + A MSSA (K'|Q(z)) —pA2GLP(K', G), (7)

where p denotes the step size, GDC is the gradient of the data consistency
term, i.e., GDC(k,y) = M5Mpk — My, and GLP is the gradient of the local
predictability term, i.e., GLP(k, G) = (G — I)*(G — I)k. The specific structural
framework of this approach is illustrated in Fig. 1(a).

2.2 Network Architecture

Square and linear window partiton In visual Transformer-based methods [3,
33], images are divided into patches, leading to quadratic computational growth
as image size increases. To address this, we adopt Swin Transformer’s [17] win-
dow partition, treating each pixel as a patch within fixed-size non-overlapping
windows. This allows our MSSA to maintain linear computational scaling.
Unlike the image domain, where neighbouring pixels are highly correlated,
k-space exhibits long-range dependencies between symmetric signals. Standard
self-attention with square windows limits cross-window interactions, restricting
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distant information capture. To overcome this limitation, we propose a novel
linear window strategy that preserves efficiency while enhancing attention to
distant signals by using non-overlapping lines as windows. Linear and square
partitions alternate in successive GPI-W'T iterations, improving the network’s
nonlinear representation and reconstruction performance. Further details are
illustrated in Fig. 1(b).

Relative position bias As the Transformer architecture is inherently order-
agnostic and relies on self-attention mechanisms, it is essential to explicitly incor-
porate positional information through positional embeddings. In our approach,
we use learnable relative position bias [17] when computing self-attention, which
not only reduces the number of trainable parameters but also enhances the per-
formance of our model in square and linear window partitions. Relative position
bias B is incorporated into each head of MSSA, thus the SSA module can ulti-
mately be modified to:

SSA(k|Qh) = Qpksoftmax ((Qhk)* Qrk + B) . (8)

3 Data and Experiments

The raw knee data was acquired from a 3T Siemens scanner. Data acquisition
used a 15 channel knee coil array and conventional Cartesian 2D TSE protocol.
We randomly selected 31 individuals (840 slices in total) as training data and 3
individuals (96 slices in total) as test data. The image size is cropped to 320 x 300.

The model unfolded 10 iterations empirically with 4 x 4 square window and 6
head in self-attention. We used ADAM optimizer [14] starting with learning rate
Ir = 0.0001, which decayed exponentially at a rate of 0.99. The parameters Ay,
A2, i, and -y are learnable parameters. Experiments were on Nvidia Tesla A6000
GPU. Three metrics were used to evaluate the results quantitatively, including
normalized mean square error (NMSE), the peak signal-to-noise ratio (PSNR),
and the structural similarity index (SSIM) [30].

4 Results and Discussion

We compared our proposed approach with state-of-the-art k-space MR recon-
struction methods, including SPIRIT [21], a classical training-free k-space in-
terpolation method; KNet [10], a DL method based on U-Net [25]; Swin Trans-
former [17]; and DSLR [22], an iterative regularization method that learns SLR
constraints using CNNs. All these methods were trained exclusively in k-space.
To further demonstrate the superiority of our GPI-WT in k-space, we also com-
pared it with a CNN-based version of GPI-WT called GPI-CNN.

Comparative experiments were conducted on knee MRI data using random
and uniform 2D sampling trajectories with acceleration factors (AF) of AF = 4,6

https://fastmri.org/
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Table 1. Quantitative comparison for various methods on knee dataset with different
mask patterns M and AF. R: random mask. I/: uniform mask. The optimal values
are denoted in bold and the proposed method is highlighted with gray background.

NMSE (% PSNR SSTM (%

Method | Mo —3m— (A)FtG AF—1 TAF:G AF—1 ( )ATF:G

SPIRIT 1595120 1.7151.00 | 29.6353.15 28.9542.50 |73.33510.28 73.0148.50
KNet 0.8440.30 1.3840.68 | 31.73:1.44 29.75+1.78 | 85.2843.08 80.914+3.95
Swin o | 0742038 LITH0.57 | 3246£1.84 30.40+1.70 | 85.8644.10 81.29-04.23
DSLR 0.76+0.28 1.2340.50 | 32.1941.64 30.13+1.77 | 85.8443.28 81.0244.02
GPL-CNN 0.57+0.29 0.96:0.38 | 33.4841.69 31.18+1.67 | 87.4242.87 83.4143.27
GPI-WT 0.48+0.18 0.81+0.33(34.13+1.64 31.92+1.65|88.94+3.24 84.93+3.84
SPIRIT 1.53+1.00 2.23£1.02 | 29.65+3.02 27.58+2.08 | 74.88+9.39 71.99+7.28
KNet 1.1340.55 2.3241.04 | 30.60+1.70 27.52+41.83 | 84.3543.14 76.884.03
Swin U 0.87+£0.44 2.08+1.20 | 31.72+1.85 28.06+1.91 | 85.65+4.16 77.75+4.55
DSLR 1.0940.52 2.17+0.87 | 30.744+1.78 27.7241.68 | 84.5443.25 76.70+4.25
GPL-CNN 0.69+0.46 1.36-0.59 | 32.79+41.86 20.77+1.73 | 87.3143.05 80.98+3.24
GPL-WT|  |0.5540.25 1.104+0.41|33.64+1.78 30.59+1.39|88.79+3.30 82.97+3.48

Table 2. Ablation experiment on knee dataset with mask pattern M and AF = 4.
R: random mask. The optimal values are denoted in bold and the proposed method
is highlighted with gray background..

Method Mg |NMSE (%) J| PSNR T |SSIM (%) 1
GPI-WT w/o LW w/o GLP 0.69£0.32 | 32.70£1.70 | 86.83%+3.35
GPL-WT w/o GLP R | 0:60+£0.30 | 33.341.77 | 87.73+3.19
GPI-BT 0.56£0.24 | 33.60-1.78 | 88.6143.22
GPL-WT 0.48:£0.18 |34.13+1.64|88.94:£3.24

and an autocalibration signal (ACS) region of ACS = 24. Table 1 summarizes the
quantitative results, including average evaluation metrics. Fig. 2 illustrates re-
constructed MRI slices at various acceleration rates. Both qualitative and quan-
titative results demonstrate that our k-space GPI-WT outperforms other ap-
proaches. The zoomed-in regions in Fig. 2 and corresponding error maps clearly
demonstrate that, compared to CNN-based unrolled methods for k-space in-
terpolation, our proposed GPI-WT significantly reduces aliasing artifacts and
delivers more stable reconstructions, underscoring its enhanced capability to ex-
ploit global structural information.

We conducted ablation experiments using random undersampling knee data
at AF = 4 to evaluate the performance of key components in GPT-WT. Specifi-
cally, we trained and tested GPT-WT without linear window partitioning (LW)
and GLP, denoted as GPT-WT w/o LW w/o GLP, which uses only square win-
dows. To validate the effectiveness of LW, we compared it with GPT-WT without
GLP but with alternating linear and square windows, denoted as GPT-WT w/o
GLP. Additionally, we evaluated GPT-WT which have GLP and alternating win-
dows against a black-box Transformer variant, denoted as GPT-BT, to assess
the contributions of GLP and the white-box design. Qualitative and quantitative
results are presented in Table 2 and Figure 3. Results show LW combined with
square windows better capture long-range dependencies, while GLP boosts lo-
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Random Mask &AF 4

Fig. 2. Reconstruction results under random and uniform masks and AF = 4,6 with
24 ACS lines. Values of NMSE(%)/PSNR/SSIM(%) are given. The second and third
rows illustrate the enlarged and error views. Grayscale bars for reconstructed images
and color bars for error maps are on figures’ right.

cal consistency. GPT-WT surpasses GPT-BT, proving its interpretable design’s
efficacy, and reduces aliasing best (Fig. 3).

5 Conclusion

This paper introduced GPI-WT, the first white-box Transformer for k-space in-
terpolation, built upon the concept of GPI. Specifically, GPI was formulated from
the perspective of annihilation as a novel k-space SLR model. Within this frame-
work, the global annihilation filters were treated as learnable parameters, and
the subgradients of the SLR model naturally induced a learnable attention mech-
anism. By unfolding the subgradient-based optimization algorithm of the SLR
model into a cascaded network, the first white-box Transformer network tailored
for MRI reconstruction was developed. Experimental results demonstrated that
the proposed method achieved superior k-space interpolation accuracy compared
to state-of-the-art approaches while offering enhanced interpretability. Currently,
we focus solely on k-space feature learning. Future work will extend the white-
box Transformer to the image domain.
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Fig. 3. Ablation results under random mask at AF = 4 with 24 ACS lines. Values
of NMSE(%)/PSNR/SSIM(%) are given. The second and third rows illustrate the
enlarged and error views. Grayscale bars for reconstructed images and color bars for
error maps are on figure’s right.
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