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Abstract. The functional brain network exhibits a hierarchical charac-
terized organization, balancing localized specialization with global inte-
gration through multi-scale hierarchical connectivity. While graph-based
methods have advanced brain network analysis, conventional graph neu-
ral networks (GNNs) face interpretational limitations when modeling
functional connectivity (FC) that encodes excitatory/inhibitory distinc-
tions, often resorting to oversimplified edge weight transformations. Ex-
isting methods usually inadequately represent the brain’s hierarchical or-
ganization, potentially missing critical information about multi-scale fea-
ture interactions. To address these limitations, we propose a novel brain
network generation and analysis approach—Dynamic Hierarchical Graph
Transformer (DHGFormer). Specifically, our method introduces an FC-
inspired dynamic attention mechanism that adaptively encodes brain
excitatory/inhibitory connectivity patterns into transformer-based repre-
sentations, enabling dynamic adjustment of the functional brain network.
Furthermore, we design hierarchical GNNs that consider prior functional
subnetwork knowledge to capture intra-subnetwork homogeneity and
inter-subnetwork heterogeneity, thereby enhancing GNN performance in
brain disease diagnosis tasks. Extensive experiments on the ABIDE and
ADNI datasets demonstrate that DHGFormer consistently outperforms
state-of-the-art methods in diagnosing neurological disorders. The code
is available at https://github.com/iMoonLab/DHGFormer.
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1 Introduction

The human brain operates as a complex network of interacting neural systems,
where both localized functional specialization and distributed connectivity pat-
terns underlie cognitive processes and behavioral outcomes [1,2,3]. This net-
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work paradigm has revolutionized neuroimaging research, providing critical in-
sights into normative brain organization and pathological alterations in neuro-
logical /psychiatric disorders|4,5].

In general, due to the correlation between different brain regions, the func-
tional brain network can be naturally structured as a graph, where nodes rep-
resent regions of interest (ROI) and edges represent the FC. As a result, graph-
based methods have become widely applied in brain network analysis. Although
the correlation score-based (e.g. Pearson correlation coefficient, PCC) brain net-
work generation mechanism is widely used in existing literature [6,7,8,9,10],
it brings two limitations: GNNs are incompatible with positive and negative
weighted edges inherent to the FC matrix, forcing ad hoc solutions like absolute
value transformations that discard neurobiologically meaningful inhibitory /excitatory
distinctions; and current graph construction methods either rely on oversim-
plified linear correlations or biologically ungrounded random graphs, failing to
reconcile data-driven learning with established biological insights [11,12,13].

Furthermore, emerging neuroimaging evidence reveals that the brain’s func-
tional architecture exhibits an inherent hierarchical organization, comprising
specialized subnetworks that coordinate both intra-modular processing and inter-
modular communication [14]. This multi-scale structure suggests that functional
subnetworks maintain distinct connectivity profiles: dense homogeneous connec-
tions within modules facilitate localized computation, while sparser heteroge-
neous links between modules enable global integration [15]. Current analytical
frameworks frequently overlook this hierarchical structure or fail to integrate
it comprehensively [16,17], potentially missing critical information about cross-
scale interactions that could enhance disease characterization and mechanistic
understanding.

To address the above problems, we present the Dynamic Hierarchical Graph
Transformer (DHGFormer), a novel framework that synergizes dynamic graph
adaptation with hierarchical representation learning for enhanced brain network
analysis. Specifically, we introduce a dynamic brain transformer inspired by FC,
which dynamically adjusts the connection weights between brain regions to learn
task-aware connectivity patterns. Furthermore, we integrate a hierarchical GNN
structure, considering prior the relationships between and within brain functional
subnetworks, to model the brain’s multi-scale architecture, thus providing a more
comprehensive and flexible representation of brain communication propagation.
The main contributions of this work are as follows:

1) We propose an FC-inspired dynamic brain transformer that enables adaptive
encoding of brain excitatory/inhibitory connectivity patterns. By leveraging
FC as an attention guiding factor to regulate the distribution of attention,
this mechanism prioritizes biologically meaningful connections between brain
regions during dynamic graph adjustment, thus optimizing the source of
task-aware information.

2) By integrating prior knowledge about functional subnetworks, we design a
brain-hierarchical GNN framework that separately models intra-subnetwork
homogeneity and inter-subnetwork heterogeneity. Our cross-scale message-
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Hierarchical Structure in Brain
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Fig. 1. The framework of the proposed DHGFormer.

passing mechanism enables information fusion and updating from the mi-
croscopic brain regions to the macroscopic functional subnetworks.

3) Experimental evaluations on two commonly used brain disease datasets demon-
strate that our method outperforms all baseline methods. Additionally, the
visualization of multi-scale brain region associations reveals the functional
connectivity patterns at multiple levels, which is beneficial for uncovering
brain pathological mechanisms.

2 Method

2.1 FC-Inspired Dynamic Brain Transformer

FC-Inspired Brain Encoding. Each scanned brain space is parcellated into IV
regions of interest (ROIs). We extract the BOLD time series X;s € RV*T based
on a given atlas, employing these to calculate the PCC matrix X;. € RV*N to
quantify the functional connectivity strength between each pair of ROIs. Exist-
ing functional brain networks are mainly constructed by calculating the PCC
matrix. However, GNNs are incompatible with functional brain networks that
have both positive and negative weighted edges, leading to ad-hoc solutions like
taking absolute values, which ignore the distinct roles of positive/negative cor-
relations (e.g., synergy vs. inhibition). Furthermore, predefined networks cannot
adaptively optimize connectivity patterns for downstream tasks.

To solve the above problems, this paper proposes an FC-inspired downstream
task-aware brain network generation method. Unlike [11], the proposed method
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ingeniously applies FC guidance information X¢. to the attention mechanism,
breaking through the inherent pattern of relying exclusively on the features
learned by the model. This innovative operation guides the model to prioritize
biologically meaningful connectivity during dynamic graph construction and op-
timize information processing at the source, thus achieving task-aware optimiza-
tion while maintaining interpretability.

Specifically, the FC-inspired brain encoder is employed to extract potential
functional correlations between brain regions from the time series X;5. Given the
input X;s and Xy., the encoder produces the brain region features in a global
perspective. This process can be formulated as: X = Encoder(Xys, X¢.). For the
FC-inspired brain encoder, we adopt a BNT-based encoder [18] as the backbone.
By feeding the X, and Xy, into the encoder, the correlation representations X
among ROIs are captured by multi-head FC-inspired attention mechanism:

Qm(K™)"
Vi
where Q™ , K™, V'™ are the query, key, and value matrices for the m-th attention
head, M is the number of attention heads, and W, are learnable parameters. The

Hadamard product of X, used as a prior attention weight distribution, suppresses
irrelevant ROI connections and strengthens functionally significant ones.

X = W,(||*_, head,,) and head,, = softmax( ©) Xfc) vreo (1)

Dynamic Graph Constructing. Based on the encoded time series feature X,
a learnable and interpretable method for generating functional brain networks
is employed, which can be formulated as:

A = X,4X ), where X 4 = softmax(X). (2)

The generation of non-negative symmetric matrices through the operation of self-
multiplication of transpose operations, in conjunction with the highlighting of
significant ROI connections by generating skewed positive edge weights through
softmax operations, is compatible with GNNs while adaptively integrating the
excitatory/inhibitory brain connectivity patterns. The constructed functional
graph structure can be dynamically optimized based on downstream tasks.

2.2 Brain Hierarchical GNNs

The human brain connectome is a hierarchical structure, and ROIs within the
same functional subnetwork have greater functional similarities compared to
functional correlations between functional subnetworks. Therefore, a brain hier-
archical GNN is introduced to model this hierarchical structure and efficiently
utilize the prior functional partitioning knowledge to learn local correlations
within and long-range dependencies across subnetworks, which compensates for
the shortcomings of long-range perception in conventional GNNs.

Intra-Subnetwork Graph Computation. To perform the intra-subnetwork
graph computation, we first consider the following elements. Given M func-
tional subnetworks (G1,...,Gps) and the membership of ROIs in the Yeo [19],
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we rearrange the rows and columns of the node feature matrix X and the ad-
jacency matrix A of the output of Dynamic Brain Transformer, resulting in X’
and A’. The intra-subnetwork connectivity mask Maskinirqa € RY*N is con-
structed as a binary matrix identifying ROI pairs within identical subnetworks:
Mask;?, . =1 < v,v; € Gi(k = 1,...,M). This mask selectively preserves
functional associations between region pairs v; and v; that co-reside in any sub-
network Gy, while eliminating inter-subnetwork connectivity. Through Eq. 3,
we extract intra-subnetwork connectivity patterns that reflect localized neural
coordination, forming the basis for subsequent group-level analyses. With the
node features X’ and the intra-subnetwork A;,:r., we apply GNNs to update
the intra-subnetwork feature representations. Compared to [16], which employs
M parallel encoders for each subnetwork, our intra-subnetwork computation
achieves efficient feature extraction via a single graph convolution, reducing pa-
rameters while improving accuracy as shown in Tab 1.

Aim‘/ra =A’ O] MaSkintraa (3>

X — 5 (At XOWD) where X = X', (4)

wnira

Inter-Subnetwork Graph Computation. To establish functional associa-
tions among subnetworks while preserving their global topological characteris-
tics, we develop a cross-scale feature mapping method that enables projecting
ROI-level features to group-level representations and deriving a group-level ad-
jacency matrix that quantifies inter-subnetwork connectivity patterns.

MaSkinter =1- MaSkintraa (5)
Ainter = HT (A’ © Mask; e, )H € RM*M (6)
X0 = o(AgngerMean(X 5y W®)., (7)

Specifically, the non-diagonal part of A’ encode inter-subnetwork functional as-
sociations, i.e., A’ ® Mask;,tc,. A normalized binary incidence matrix H =
HC~'/2 mediates the scale transition, where H € {0,1}V*M gatisfies H; ; =
1 & v; € Gy, and C = diag(}_, H; ;) serves as the degree normalization matrix.

The result constitutes a compressed graph representation where each group-
level node corresponds to a subnetwork. Group-level node features are computed
through mean-pooling over constituent ROI features, followed by learnable trans-
formations through a weight matrix. This hierarchical architecture enables si-
multaneous modeling of local functional units and global network interactions.

Inter-Intra Cross-Scale Message Passing. After obtaining the group-level
feature representations XD the XD i passed back to the ROI-level features

inter? inter

ng:trrl 3 for cross-scale information fusion to realize the global feature update.
I1+1 l
X{pier € RMP s @(X (1)) € RYP, (8)
X+ = Fusion(X {0, X[12)). (9)
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Specifically, Xz(i;elr) is first mapped by a mapping function @(-) according to the
brain region composition of each subnetwork, and then the ROI-level features
ng:trrl 2 and mapped group-level features @(Xﬁ;elr)
fusion and global feature X1 update.

) are added to perform feature

2.3 Readout Layer

The multi-scale features X(+1) are transferred to the Readout Layer. The read-
out result is generated by concat pooling operations and then fed into the MLP
to obtain the result. The whole process is supervised with cross-entropy loss.

3 Experiments

3.1 Experimental Settings

Datasets and Preprocessing. The proposed DHGFormer is evaluated on
two distinct brain disease diagnosis tasks. 1) Autism Brain Imaging Data Ex-
change(ABIDE)[20] aggregates neuroimaging data from 16 global research cen-
ters, comprising 539 individuals with ASD and 573 normal controls (NCs). 2)
Alzheimer’s Disease Neuroimaging Initiative (ADNI)[21] represents a multicen-
ter longitudinal study focused on enhancing therapeutic intervention assessment
for MCI. In this study, we select a subset of ADNI consisting of 125 MCI patients
and 139 NCs. Data preprocessing is conducted using DPARSF[22].

Baselines. The DHGFormer is compared with several state-of-the-art methods,
including GNN-based methods, Hierarchical-based methods, and transformer-
based methods. The codes are reproduced based on the released codes.

Implement. The models are trained on an NVIDIA 3090 GPU. In the FC-
Inspired encoder, the number of attention heads is set to 8. The training/test
data is randomly split by five-fold cross-validation. During training, the Adam
optimizer is utilized with an initial learning rate of le-4 and a weight decay fac-
tor of le-4. The batch size is 16 and the epoch is set to 100. The final results are
expressed as mean values + standard deviation of the five-fold cross-validation.

Evaluation Metrics. Within this research, all the experiments are structured
as binary classification tasks. The classification performance is assessed using
the following metrics: accuracy, sensitivity, specificity, and AUC.

3.2 Experimental Results Comparison and Analysis

As shown in Table 1, the DHGFormer achieves optimal performance across all
metrics on the ABIDE and ADNI datasets. On the ABIDE dataset, the ACC of
DHGFormer reaches 73.21%, which is 5.08% higher compared to the GNN-based
method and 1.98% higher compared to the Transformer-based method; In the



DHGFormer: Dynamic Hierarchical Graph Transformer 7

Table 1. Experimental Results of the Comparison Methods.

Dataset | Method | AcCC(%) SEN(%) SPE(%) AUC
MVS—GCN[ ] 68.134+2.64 69.2215 21 67.1614.73 0.680440.0286
Com—BTF[ ] 70.60i2‘73 71.99:&5,03 69.38:&@94 0‘7245:&00467
FBNETGEN]11] 70.46+2.43 69.7944.64 71.1645.26 0.715940.0258
ABIDE HHGF[17] 70.0543.47 69.5845.47 71.5446.26 0.712640.0547
BrainIB|[24] 69.2148 64 65.3215.70 72.9445 32 0.690210.0327
ALTER|[25] 71.2342 86 71.2743.84 71.2242 02 0.754710.0207
DHGFormer 73.21i1_51 72.78i4_14 74-02i3.80 0.7646i0,0377
MVS-GCNJ[23] 63.67+1.17 65.30+2.69 61.78+4.00 0.66264+0.0302
Com-BTF|[16] 66.67+3.72 67.4942. 67 65.5543.56 0.6880+0.0301
FBNETGEN]!11] 65.0541.86 65.7042.50 64.0145.83 0.66904+0.0332
ADNI HHGF|[17] 67.3541.55 66.2842.65 68.444 3.07 0.71084+0.0286
BrainIB[24] 64.6842.94 66.36+9.01 63.6248.14 0.6383+0.0390
ALTER][25] 68.5041.17 69.3242.28 67.3342.58 0.720040.0181
DHGFormer 71.03:&1‘97 71.83:&2‘25 70.06:&2‘26 0.7335:&0‘0352

Table 2. Experimental Results of the Ablation Study.

Dataset | Method | Acc(%) SEN(%) SPE(%) AUC
DHGFormer w/o dynamic | 67.88+2.36 68.3943.48 67.50+1.85 0.717540.0233
ABIDE DHGFormer W/O FC 69.85i1_72 70‘95:&3‘52 69.18i3‘30 0‘7311:&(]‘0140
DHGFormer W/O HG 69.65;&1,93 68.21:&4‘91 71.24:&2,55 0‘7280:&00237
DHGFormer 73.21:&1,51 72.78i4.14 74.02;&3,30 0.7646i0,0377
DHGFormer w/o dynamic | 66.8341.79 68.1942 63 65.1245 23 0.689440.0215
ADNI DHGFormer w/o FC 69.4941 26 69.4141 92 69.58+1.97 0.716440.0121
DHGFormer W/O HG 67.2949 54 67.6611.83 66.9511 67 0.7008+0.0397
DHGFormer 71.03i1_97 71.83:&2‘25 70~06i2,26 0.7335:&0‘0352

ADNI dataset, the ACC (71.03%) and AUC (0.7335) of DHGFormer also out-
perform all baselines, with improvements of 2.53% and 1.35%, respectively, over
the suboptimal method. Notably, DHGFormer maintains a balanced improve-
ment in both SEN and SPE, demonstrating the effectiveness and robustness of
DHGFormer. These notable gains validate our two core contributions: 1) Dy-
namic functional connectivity patterns guided by FC-inspired factors provide
more discriminative network representations than static graphs; 2) Hierarchical
modeling grounded in prior functional partition knowledge enables multi-scale
feature integration from local functional subnetworks to the global brain.

3.3 Ablation Study

Three variants of the DHGFormer model are constructed to evaluate the role of
the key module: DHGFormer w/o dynamic, replacing the dynamic generation
method with the static PCC brain network construction method; DHGFormer
w/o FC, removing the FC-inspired factors; and DHGFormer w/o HG, replacing
the Hierarchical GNN instead of conventional GNN.
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ABIDE ADNI

(a) Functional Connectivity at the Group-Level (b) Discriminative ROIs

Fig. 2. Visualization analysis of ROI-level and group-level associations.

As shown in Table 2, when the dynamic optimization mechanism of the brain
network is removed, performance decreases by 5%. This marked decrease reveals
that dynamically updating the brain network structure enables a more effective
capture of the latent functional connectivity patterns associated with neurologi-
cal disorders. Removal of the FC-inspired factor results in a performance reduc-
tion exceeding 3%. This finding suggests that FC as an attention guiding factor
can effectively modulate the distribution of attention scores and prioritize bio-
logically significant functional connections during brain network optimization.
Moreover, replacing the hierarchical GNN with a conventional GNN causes over
3% performance degradation. This comparative analysis highlights the hierarchi-
cal design enables cross-scale feature integration from micro-level brain regions
to macro-level functional subnetworks through prior knowledge incorporation,
allowing comprehensive characterization of disease pathology.

3.4 Visualization

Our visual analysis reveals interaction patterns among functional subnetworks
Fig. 2 (a), where connection width represents functional connectivity strength.
Comparative analysis demonstrates that the Default Mode Network (DMN) ex-
hibits significant hub properties in both neurodevelopmental disorders while dis-
playing pathological heterogeneity in specific interaction patterns. Notably, the
ABIDE dataset analysis shows pronounced DMN-Frontoparietal Network (FPN)
connectivity, potentially associated with abnormal executive function regulation.
Conversely, in the ADNI dataset, significant interaction occurs between DMN
and the Dorsal Attention Network (DAN), suggesting compensatory alterations
in sensorimotor integration mechanisms. Moreover, we further showcase the dis-
criminative ROIs for disease diagnosis in Fig. 2 (b). These key ROIs mainly lo-
calize to DMN (ABIDE: Middle frontal gyrus, Posterior cingulate gyrus, ADNI:
Hippocampus, Olfactory cortex) similar to the results of the group-level depen-

dencies and consistent with the findings of previous studies [26,27,28].
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4 Conclusion

This study presents a Dynamic Hierarchical Graph Transformer framework that
advances brain network analysis by synergizing dynamic functional connectivity
learning with hierarchical neural representation. By addressing the incompati-
bility of GNNs with PCC-based brain graphs, DHGFormer dynamically adapts
edge weights to preserve neurobiologically critical inhibitory/excitatory interac-
tions while integrating prior knowledge of functional subnetworks. Experimental
results demonstrate the effectiveness of our method in both disease classification
and interpretable biomarker discovery, outperforming compared methods. The
framework’s ability to reveal abnormal multi-scale connectivity patterns provides
valuable insights into pathogenic mechanisms of neurological disorders, bridging
the gap between data-driven deep learning and neuroanatomical priors.
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