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Abstract. Endoscopic imaging plays a crucial role in modern diagnos-
tics and minimally invasive procedures. However, artifacts caused by
specular and diffuse reflections present significant challenges, particu-
larly in tasks such as endoscopic image segmentation. Existing methods
tackling endoscopic artifacts typically address only one type of reflection,
failing to fully account for the non-Lambertian reflectance of endoscopic
tissue structures. Therefore, inspired by the simplified Phong model for
endoscopy, we propose a two-stage artifact inpainting framework. The
first stage suppresses specular artifacts, while the second stage focuses
on inpainting diffuse artifacts. Additionally, we introduce a weight map
to control the handling of diffuse artifacts, ensuring a more precise en-
hancement. To evaluate its effectiveness, we focus on its impact on en-
doscopic image segmentation tasks. Extensive experiments on multiple
colonoscopy and dental endoscopy datasets demonstrate that our frame-
work can robustly improve the segmentation performance of endoscopic
images, offering better enhancement than existing state-of-the-art meth-
ods. Particularly, for zero-shot SAM segmentation of teeth, a significant
performance boost is observed after inpainting, with mDice and mIoU in-
creasing from 51.5%/39.3% to 96.1%/93.0%. Code is available at GitHub.

Keywords: Endoscopic Artifact · Specular Reflection · Diffuse Reflec-
tion · Image Inpainting · Endoscopic Image Segmentation.

1 Introduction
Endoscopy has become a cornerstone of modern medicine, offering clinicians a
high-resolution, real-time view of the body’s intricate structures to detect, mon-
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itor, and treat various conditions while minimizing the risks of invasive proce-
dures [1]. With the rapid development of deep learning, researchers are leveraging
these endoscopic images for tasks like segmentation [2], diagnostic support [3],
depth estimation [4], and 3D reconstruction [5]. The integration of AI with endo-
scopic imaging holds the potential to revolutionize medical procedures, leading
to faster, more accurate, and less invasive interventions.

Despite these impressive strides, the unique anatomical characteristics of en-
doscopic tissue structures pose their own challenges. A significant number of
artifacts arise during the imaging process, with reflection artifacts being one of
the most common issues [6]. These artifacts not only impair immediate diag-
nostics but also compromise downstream quantitative analyses, such as video
mosaicking and keyframe retrieval, leading to an increased need for repeat pro-
cedures and contributing to higher patient discomfort and healthcare costs [2].
Furthermore, small areas of sharp specular reflections can negatively impact im-
age segmentation [7], while large overexposed areas caused by diffuse reflection
may interfere with 3D reconstruction [8].

Some studies have attempted to address the issue of reflection artifacts in en-
doscopic imagery. However, most anatomical structures captured in such images
exhibit non-Lambertian reflectance properties [8], meaning they simultaneously
present both specular and diffuse reflections. Existing research addresses reflec-
tion artifacts in endoscopic imagery from three main approaches. One focuses
on suppressing specular artifacts [7], but it overlooks diffuse artifacts. Another
relies on iterative in-situ rendering [8], which is computationally expensive and
unsuitable for real-time applications. A third approach utilizes video-based image
processing techniques [9], but these methods often struggle with dynamic endo-
scopic environments. Moreover, the complex and varied anatomical structures in
endoscopic images, such as the intricate tissue surfaces, make it challenging to
acquire artifact-free images. This difficulty further complicates former effective
methods like TSHRNet [10] and M2-Net [11]. Recently, larger-scale pretrained
models such as LaMa [12] and StableDelight (SD) [13] offer potential for zero-
shot inpainting of these artifacts, though their effective application to endoscopic
imagery still requires further investigation.

Therefore, in this paper, we propose a two-stage endoscopic artifact inpaint-
ing framework to address the challenges of non-Lambertian reflectance. The
framework first suppresses high-intensity specular artifacts by locating and in-
painting overexposed regions, restoring underlying tissue textures. It then ad-
dresses residual diffuse artifacts by adaptively blending intensity-guided refine-
ments, harmonizing inconsistent illumination while preserving critical anatomi-
cal features. To evaluate the effectiveness of our approach, we perform extensive
experiments across fully supervised learning and zero-shot adaptation on multi-
ple endoscopic datasets. These real-world endoscopic scenarios demonstrate the
robustness and generalizability of our method, showing significant improvements
in segmentation accuracy, resilience to imaging artifacts, and adaptability to di-
verse anatomical structures.
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Fig. 1: Illustration of the proposed framework.

2 Methods
We propose a two-stage method to address endoscopic artifacts for improving en-
doscopic image segmentation. As illustrated in Fig. 1, our framework consists of
two key components: Specular Artifact Inpainting (Sec. 2.2), which targets
highly reflective specular regions, effectively mitigating intense glare and mini-
mizing disruptive artifacts; and Diffuse Artifact Inpainting (Sec. 2.3), which
refines areas with weaker reflections that exhibit Lambertian-like properties and
appear closer to diffuse reflections, reducing residual artifacts and enhancing
surface consistency. These enhancements make the processed endoscopic images
more suitable for subsequent segmentation tasks.

2.1 Preliminary

To describe the reflection phenomenon in endoscopic images, we employ the
Phong reflectance model [14], which is widely used to simulate the way light
interacts with surfaces. This model is based on three components: ambient, spec-
ular, and diffuse reflection. Since endoscopy typically uses a single light source,
and the light source and camera are positioned closely together [15], we assume
the light L is aligned with the viewing direction. Under these conditions, the
equation for the observed endoscopic image I can be expanded as:

I =
∑

ka(x, y)|L|+
∑

ks(x, y)|L|︸ ︷︷ ︸
specular artifact

+
∑

kd(x, y)(N(x, y) · L)︸ ︷︷ ︸
diffuse artifact

(1)

where ka(x, y) is the RGB value at pixel (x, y), ks is the specular reflection
coefficient on smooth surface, e.g., tissue covered with mucus, kd is the diffuse
reflection coefficient on rougher surface, and N(x, y) represents surface normal.
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Thus, the task of removing artifacts can be formulated as estimating the
distribution of

∑
ks(x, y)|L| and

∑
kd(x, y)(N(x, y) · L) across the image I,

effectively separating the specular and diffuse artifact components.

2.2 Specular Artifact Inpainting

Since sharp specular artifacts primarily arise from strong directional reflections,
they tend to exhibit high intensity, distinct color distributions, and strong spatial
coherence, making them relatively easy to segment by appropriate masks.

As a result, we apply a pretrained mask-guided inpainting neural network
LaMa [12], which leverages fast Fourier convolution blocks to generate missing
structures within specified regions. Let INP (·, ∗) denote the inpainting model,
we can obtain specular artifacts suppressed image InoSpec with:

InoSpec = INP (Imasked,Ms) (2)

where Ms ∈ {0, 1}H×W represents a pixel-wise binary mask indicting highly
reflective regions across the input image I, and Imasked denotes the masked image
generated by subtract operation, i.e., Imasked = I −Ms ⊙ I. To obtain Ms for
the specular artifact inpainting, we train a segmentation network DUCKNet [16]
from scratch, which is specially designed for endoscopic images.

Given that when specular reflections occur on sufficiently smooth tissue sur-
faces, the local intensity of reflected light can exceed the dynamic range of the
imaging sensor, leading to overexposure and loss of structural details. There-
fore, the distribution of ks(x, y) across the image I in Eq. (1) can be effec-
tively estimated by using the binary specular mask Ms, i.e.,

∑
ks(x, y)|L| =∑

Ms(x, y)|L|. As such, the specular mask-guided LaMa inpainting process can
finally suppress the specular artifact component in Eq. (1).

2.3 Diffuse Artifact Inpainting

Note that even after specular artifacts have been suppressed, the resulting image
InoSpec still contains diffuse artifacts, which can be modeled as follows:

InoSpec =
∑

ka(x, y)|L|+
∑

kd(x, y)(N(x, y) · L). (3)

However, accurate pixel-wise estimation of kd(x, y) and N(x, y) across the
specular artifact-free image InoSpec is computationally inefficient. To overcome
this limitation, a tailored stable-diffusion architecture for reflection removal, Sta-
bleDelight [13], is utilized, which leverages the You-Only-Sample-Once (YOSO)
method [17], enabling an effective image-to-image strategy that directly ad-
dresses the residual artifacts.

Therefore, given a well-pretrained VAE encoder Enc(·), control signal en-
coder fϕ, decoder blocks of U-Net µθ(·), and VAE decoder Dec(·) of StableDe-
light [13], this process could be described as:

I ′ = Dec(µθ(fϕ(Enc(InoSpec)), t+, ϵ)) ϵ ∼ N (0, I) (4)
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where I ′ should be ideally equal to the artifact-free image. However, StableDe-
light was pretrained on multiple multi-light-source and non-endoscopic images
including datasets used by TSHRNet [10]. As a result, pathological details in
regions with fewer or no diffuse artifacts may be partially mistakenly removed.

To address adjustments, we propose a WeightMap Guidance submodule,
where the intermediate image I ′ from Eq. (4) is adaptively fused with the in-
painted image InoSpec in Eq. (2) to output the final refined image Iout:

IOut = W ⊙ I ′ + (1−W )⊙ InoSpec (5)

where W ∈ [0, 1]H×W denotes a newly calculated weight map, guiding the se-
lective blending process. The weight map W plays a critical role in selectively
refining regions affected by diffuse artifacts, particularly suppressing the exces-
sively processed details by the StableDelight model.

To generate the critical weight map W , we leverage a threshold-based arti-
fact detection method. First, we convert the specular artifact-suppressed image
InoSpec into a grayscale image G. An indicator function IND(x ∈ G,Θ) reserves
only artifact regions with light intensity higher than threshold Θ, followed by
dilation operation (kernel size = 15) DILATE(·) to refine the detection further.
The resulting grayscale intensity map DILATE(IND(G,Θ)) ∈ [0, 255]H×W is
then scaled to a continuous-valued weight map W ∈ [0, 1]H×W using the follow-
ing equation:

W =
DILATE(IND(G,Θ))−min(DILATE(IND(G,Θ)))

max(DILATE(IND(G,Θ)))−min(DILATE(IND(G,Θ)))
(6)

where higher values of W indicate stronger diffuse artifact presence, ensuring
that essential anatomical information is preserved while reducing artifacts.

3 Experiments

3.1 Experimental Setup

We evaluate our proposed method on endoscopic image segmentation tasks, in-
cluding colonoscopy polyp segmentation and dental endoscopy tooth segmenta-
tion, where endoscopic artifacts negatively impact segmentation performance.
We use both supervised and zero-shot settings to comprehensively evaluate the
effectiveness of our approach. We report mDICE and mIOU for quantification.
Datasets 1) Colonoscopy polyp segmentation We use four polyp segmentation
datasets including CVC-ClinicDB [18], Kvasir [19], CVC-ColonDB [20], and
ETIS [21], which provide 612/1000/380/196 input-target pairs in total, respec-
tively. We follow the data split (train:val:test = 8:1:1) and evaluation protocols in
PraNet [22]. 2) Dental endoscopy tooth segmentation For the tooth segmentation
task, we curate an in-house dataset of 195 dental endoscopic images captured
using the RGB camera of an intraoral 3D scanner with human-annotated tooth
masks.
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Supervised and Zero-Shot Settings Two distinct learning paradigms were
investigated: 1) Supervised learning for polyp segmentation, where FCBFormer
[23], a model tailored for endoscopic applications, was trained end-to-end follow-
ing [23] on artifact-free polyp images; 2) Zero-shot adaptation for tooth segmen-
tation, leveraging foundation models without task-specific training. We employed
SAM [24] with manual point prompts targeting diagnostically critical regions and
EVF-SAM [25] using text prompts to infer processed artifact-free images.
Implementation Details We employ LaMa’s publicly-released pretrained
weight Big-LaMa for specular artifact inpainting. To avoid the omission of
artifacts, we set LaMa’s hyperparameter ksize to 15, expanding the coverage
of specular mask Ms. We also leverage DUCKNet [16] trained on the CVC-
ClinicSpecific dataset [26] for specular artifact detection and the acquisition of
specular mask Ms. For all other hyperparameters related to LaMa and DUCK-
Net, we follow the official implementations for consistency and reproducibility.
Lastly, threshold Θ is set to 150 in WeightMap guidance submodule.

Using an NVIDIA 4090 GPU and Pytorch 2.2.0 framework on python 3.10.16,
we train DUCKNet with 16 filters for 100 epochs using a batch size of 8 and the
RMSprop optimizer with an initial learning rate of 1e-4. The sum of soft dice
loss (smooth = 1) and binary cross entropy loss is used for the loss function.

For foundation models, we use SAM’s SAM-ViT-H and EVF-SAM’s EVF-
SAM-multimask checkpoints. Note that EVF-SAM generates semantic-level
masks only with a special token "[semantic]". Thus we utilize “[semantic] Tooth”
for the text prompt.

3.2 Comparison with State-of-the-Art Methods

To thoroughly evaluate our proposed method, we compare the performance of
our framework in enhancing the segmentation performance against SOTA mod-
els that can be adapted for endoscopic artifact inpainting. These include TSHR-
Net [10], M2-Net [11], DHAN-SHR [27], EndoSRR [7] and StableDelight [13].

Table 1 shows primary assessment results on both colonoscopy polyp seg-
mentation and dental endoscopy tooth segmentation tasks. The results of polyp
segmentation are based on FCBFormer [23], whereas tooth segmentation results
are obtained through prompting SAM/EVF-SAM [24,25]. As shown in the ta-
ble, our proposed method outperforms all baseline methods across all metrics on
the datasets, demonstrating the superior generalization and robustness of our
approach compared to various established SOTA methods.
Colonoscopy polyp segmentation performance Although most artifact in-
painting methods show improvements over the baseline with original images,
these improvements are marginal and not guaranteed in all scenarios. In con-
trast, our proposed method consistently demonstrates improvements across all
cases. For example, it achieves 81.0% mDice and 73.2% mIoU on the ETIS
dataset, 1.5%/1.8% higher than the second-best performing EndoSRR (p < 0.05,
Wilcoxon signed-rank test), indicating that these gains are statistically signifi-
cant.



Endoscopic Artifact Inpainting 7

Table 1: Quantitative comparison of the proposed artifact inpainting method
with state-of-the-art methods for segmentation performance enhancement (%)

Methods
Polyp Datasets Tooth Dataset

CVC-ClinicDB Kavsir-SEG CVC-ColonDB ETIS Teeth(Point) Teeth(Text)
mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU

Original Image 93.2 88.8 92.0 87.0 77.4 69.0 79.3 71.3 51.5 39.3 84.1 74.0
TSHRNet [10] 93.0 88.4 91.4 86.2 79.0 69.7 73.6 65.2 73.5 62.1 80.6 70.0
M2-Net [11] 93.6 89.4 92.5 87.4 80.9 73.0 78.2 70.9 75.7 65.6 84.6 74.9
DHAN-SHR [27] 93.6 88.5 92.1 87.0 79.4 70.2 77.7 68.6 65.1 52.9 85.1 75.4
EndoSRR [7] 94.1 89.2 92.7 87.6 79.6 70.0 79.5 71.4 95.8 92.5 86.3 77.3
StableDelight [13] 93.4 89.0 91.3 86.0 76.2 69.0 69.2 62.4 91.4 85.6 77.9 66.8
Ours 95.0 90.6 93.3 88.3 81.5 73.4 81.0 73.2 96.1 93.0 86.8 78.0

Fig. 2: Visual comparisons between original image, former methods, and our
proposed method. Blue boxes: specular artifacts; Green boxes: diffuse artifacts.

Dental endoscopy tooth segmentation performance Similarly, our pro-
posed method also achieves remarkable improvements in enhancing zero-shot
segmentation accuracy on the tooth dataset, reaching 96.1%/93.0% with SAM
and 86.8%/78.0% with EVF-SAM, a dramatic improvement over the baseline by
+44.6%/+53.7% and +2.7%/+4.0% in the mDice and mIoU.

Visualizations Fig. 2 demonstrates our framework can effectively inpaint both
specular and diffuse artifacts, addressing challenges where existing models ei-
ther omit specular artifacts or excessively handle diffuse artifacts. For example,
M2-Net, DHAN-SHR and StableDelight fail to suppress specular artifacts (blue
boxes), while TSHRNet and EndoSRR fail to inpaint diffuse artifacts (green
boxes). However, our proposed method can accurately locate and inpaint both
types of artifacts while preserving the original details with minimal distortion.

Fig. 3 illustrates how our proposed method overcomes the impact of reflection
artifacts on segmentation results, providing more well-defined boundaries in the
segmentation maps compared to other baseline methods.

3.3 Ablation Study

Key components for artifacts inpainting We conduct ablation studies to
evaluate the effectiveness of key components in Table 2. In the specular artifact
inpainting module, Detect refers to specular artifact detection using DUCKNet,
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Fig. 3: Segmentation result comparisons between our method and baselines.

Table 2: Ablation on key components for artifact inpainting (%).

Modules Datasets
Specular Diffuse CVC-ClinicDB Kvasir-SEG CVC-ColonDB ETIS Teeth(Point) Teeth(Text)

Detect Inpaint SD Guide mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU
# # # # 93.2 88.8 92.0 87.0 77.4 69.0 79.3 71.3 51.5 39.3 84.1 74.0
! # # # 94.5 89.9 92.3 87.2 78.4 69.5 76.5 68.1 49.5 37.4 83.6 73.2
! ! # # 94.6 90.0 93.0 88.0 81.8 73.8 80.0 72.2 95.8 92.7 86.5 77.5
! ! ! # 94.4 89.6 91.1 86.4 76.8 69.7 77.7 70.5 94.5 90.5 83.4 73.6
! ! ! ! 95.0 90.6 93.3 88.3 81.5 73.4 81.0 73.2 96.1 93.0 86.8 78.0

Table 3: Ablation on
loss functions(%)

Dice BCE CVC-ClinicSpecific
mDice mIoU

! # 79.08 67.03
# ! 82.78 71.62
! ! 83.44 72.61

Table 4: Ablation on
dilate kernel size(%)

ksize
CVC-ClinicDB
mDice mIoU

12 94.66 90.12
15 95.02 90.63
18 93.75 89.66

Table 5: Ablation on
threshold selection(%)

Θ
CVC-ClinicDB
mDice mIoU

140 94.10 89.37
150 95.02 90.63
160 94.06 89.50

and Inpaint stands for the inpainting process. In the diffuse artifact inpaint-
ing module, SD stands for the inpainting with StableDelight, and Guide is the
WeightMap guidance. The results demonstrate the effectiveness of each com-
ponent in our proposed method across most datasets. However, it should be
noted that on the CVC-ColonDB dataset, which contains blurry images with
significant dispersion, the contribution of the diffuse artifact inpainting is less
pronounced compared to other scenarios.
Loss function for specular artifact detection Two loss functions are eval-
uated for specular artifact detection including soft dice loss (Dice) and binary
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cross entropy loss (BCE). Table 3 shows that the best performance of DUCKNet
is achieved by combining both loss functions in the training process.
Dilate kernel size for specular artifact inpainting Table 4 examines the
impact of LaMa’s configurable hyperparameter ksize on specular artifact inpaint-
ing performance in the CVC-ClinicDB dataset. Experimental findings indicate
that setting this parameter to 15 yields optimal inpainting results.
Threshold selection for WeightMap Guidance Table 5 demonstrates the
effect of Θ on segmentation enhancement using the CVC-ClinicDB dataset. The
results suggest that 150 is more suitable for guiding the mixture of I ′ and InoSpec.

4 Conclusion

We propose a novel two-stage framework for endoscopic artifact inpainting, ad-
dressing both specular and diffuse artifacts in non-Lambertian anatomical struc-
tures. Extensive experiments on polyp and dental datasets demonstrate signif-
icant improvements of the proposed method in downstream endoscopic tasks,
achieving state-of-the-art performance in supervised segmentation and robust
zero-shot segmentation for endoscopic images. Future work will focus on evalu-
ating and adapting the proposed method for more downstream tasks, as well as
integrating real-time capabilities to facilitate clinical deployment.

Disclosure of Interests. No conflicts of interests to be declared.
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