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Abstract. Rheumatic heart disease (RHD) is the leading global cardiac condition, 

affecting over 54 million people, predominantly in resource-constrained coun-

tries. Early detection via color Doppler echocardiography is crucial but often in-

accessible due to reliance on specialized cardiologists. Consequently, such data 

from patients diagnosed with RHD are scarce. To address data limitations in de-

veloping robust RHD detection methods, we propose a novel AI-driven approach 

to synthesize color Doppler echocardiograms with matched B-mode ultrasound 

using a multi-factor conditioned diffusion model. To our knowledge, this is the 

first generative AI design for dual-channel color Doppler synthesis. Our model 

enhances realism by incorporating temporal information for motion consistency 

and class label for targeted synthesis. We use B-mode ultrasound to visualize 

anatomical structures and the Doppler-mode fields of view to define blood flow 

regions across key echocardiographic views (e.g., parasternal and apical). We 

synthesize one echocardiographic mode from another using cross-view transla-

tion to augment data and improve diversity. We evaluated our approach using 

synthetic data generated from echocardiograms of 589 Ugandan cases and the 

public CAMUS dataset. Our model outperformed state-of-the-art generative 

methods in fidelity and structural similarity. We trained and tested an RHD clas-

sifier on limited data from different devices. Training with synthetic data signif-

icantly improved detection performance compared to a model trained only on real 

data. These findings highlight the potential of diffusion-based synthetic data to 
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democratize the diagnosis of heart diseases in marginalized populations and low-

resource settings. Our approach is scalable, promotes health equity, and contrib-

utes to RHD prevention and reduced mortality. 

Keywords: Classification, Color Doppler Echocardiogram, Conditional Diffu-

sion Model, Dual-Channel Synthesis, Health Equity, Rheumatic Heart Disease. 

1 Introduction 

Rheumatic heart disease (RHD) is a major global health concern, affecting over 54 

million people and causing more than 300,000 deaths annually—primarily in low-re-

source regions [1]. RHD is frequently diagnosed late, requiring complex surgical inter-

vention unavailable in endemic regions [2]. Color Doppler echocardiography is essen-

tial for early RHD identification, as it visualizes blood flow direction with RGB over-

lays on B-mode (grayscale) ultrasound. B-mode provides detailed cardiac anatomy, 

highlighting structures such as ventricular walls, valves, chamber size, wall motion, and 

structural abnormalities. In screening sonography, RHD often presents as mitral regur-

gitation (MR), characterized by retrograde blood flow into the left atrium during ven-

tricular systole, with a distinct blue jet. Nevertheless, this valuable diagnostic tool faces 

challenges in resource-constrained settings where skilled physicians are rarely available 

to interpret the data [3]. RHD develops during childhood and can easily go undetected. 

There are also significant challenges in developing technology to automatically detect 

RHD, including difficulties in curating data from vulnerable patients and from low-

income areas, where the disease is endemic and access to medical technology and 

healthcare is limited. As a result, echocardiograms, including color Doppler imaging 

from children with RHD are rarely available, constraining the development of machine 

learning methods to aid automated analyses and detection. 

Generative AI can enhance small datasets for training machine learning models, but 

no existing model adequately synthesizes color Doppler overlaid with B-mode ultra-

sound, as needed for RHD detection. Techniques like generative adversarial networks 

(GANs) and diffusion models (DMs) have been used for ultrasound synthesis [4–8], 

primarily for B-mode images, except for [4], which focuses solely on color Doppler. 

GANs face challenges like hallucinated anatomical structures and mode collapse [9, 

10], whereas DMs can generate synthetic images/videos with domain-specific condi-

tioning [11, 12]. Recent diffusion-based echocardiographic synthesis has explored se-

mantic label-guided generation [5], privacy-preserving video diffusion [6], and dual-

conditioned fetal ultrasound synthesis [7]. Zhou et al. [8] introduced a multimodal dif-

fusion framework that integrates local (e.g., mitral valve motion) and global (e.g., im-

age priors) conditions to enhance fine- and coarse-grained control and temporal coher-

ence. However, this computationally intensive approach does not synthesize color Dop-

pler. Sun et al. [13] proposed a numerical framework that combines patient-specific 

computational fluid dynamics with an ultrasound simulation environment to generate 

synthetic B-mode and color Doppler images. While effective at simulating Doppler ar-

tifacts (e.g., clutter, aliasing), it does not model pathological cases. 
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We present the first AI-driven method for generating clinically realistic, pathological 

Doppler–B-mode image pairs, leveraging multi-factor conditioning to enhance realism 

and diagnostic utility. Key contributions include: (1) AI-driven synthesis of color Dop-

pler echocardiography paired with B-mode ultrasound; unlike the physics-based 

method in [13] or B-mode-only approaches such as [8], our data-driven method syn-

thesizes both B-mode and color Doppler images—either individually or as paired 

sets—with or without pathology; (2) a dual-channel conditional DM to address data 

scarcity (e.g., RHD); (3) a 3.5D-DM framework with multi-factor conditioning, where 

“3.5D” refers to a hybrid temporal model for ultrasound videos that combines 2.5D 

modeling for Doppler and 1D for B-mode to capture modality-specific spatiotemporal 

dynamics; (4) cross-view translation to enhance data diversity and generalization by 

transforming echocardiographic views (e.g., apical to parasternal); and (5) validation 

on a downstream RHD detection task, demonstrating potential for equitable diagnosis 

in low-resource settings. This approach addresses data limitations, advancing AI-

assisted cardiac diagnostics and accessibility. 

2 Datasets 

We trained our approach on a private dataset (D1) and evaluated it on D1, an independ-

ent private dataset (D2), and the publicly available CAMUS (CA) dataset [14]. Both 

D1 and D2 were IRB-approved by Children’s National Hospital (#00010408). (1) D1 

consists of 462 pediatric echocardiographic cases (ages 5–17, mean: 12 ± 3 years) from 

Uganda, where RHD is endemic. Data were acquired using GE Vivid Q/IQ ultrasound 

machines (5 MHz transducer) in apical 4-chamber (A4CC, 451 videos) and parasternal 

long-axis (PLAXC, 462 videos) views, both with color Doppler. Each clip has an aver-

age resolution of 592×817 pixels and 40 ± 18 frames. Expert cardiologists classified 

207 cases as normal and 255 as RHD-positive (195 borderline, 44 definite, 16 severe) 

based on MR presence. Fig. 1 shows paired A4CC and PLAXC views for normal and 

borderline RHD cases. (2) D2 is an independent dataset of 127 Ugandan cases (ages 

15–75), including 188 PLAXC and 117 A4CC videos. Of these, 79 cases were RHD-

positive with MR, and 48 were normal. Data were collected using a Terason ultrasound 

machine (Terason Inc., Burlington, MA, USA), with an average resolution of 763×1033 

pixels and 70 ± 21 frames per clip. Expert cardiologists confirmed all diagnoses. (3) 

CA is a publicly available dataset containing 500 echocardiographic cases collected 

using a GE Vivid E95 ultrasound system. Each case includes apical 4-chamber and 2-

chamber B-mode views, with manual annotations of cardiac structures at end-diastole 

and end-systole. We used the apical 4-chamber data to evaluate synthetic color Doppler 

echocardiograms in the A4CC view and translate them to the PLAXC view. 

 

 

Fig. 1. Paired A4CC and PLAXC views in B-mode and color Doppler during ventricular systole, 

showing the MR jet (rectangle) in a borderline RHD case (left) and a normal case (right). 
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Preprocessing: Matched B-mode and color Doppler echocardiograms were temporally 

aligned using maximum cross-correlation and spatially registered via affine transfor-

mation using the ANTs toolbox [15]. Cropping was performed with square bounding 

boxes designed to retain essential flow features in the color Doppler images. These 

cropping regions were defined based on manually identified Doppler-mode fields of 

view (FOVs) and applied uniformly across all frames in each video to ensure spatial 

and temporal coherence. 

3 Methods 

Our proposed framework, illustrated in Fig. 2, synthesized data using a 3.5D-condi-

tional DM, followed by sampling and quality checking during inference. The high-

quality synthesized samples were then used in a downstream task for RHD detection. 

 

 

Fig. 2. Overview of dual-channel color Doppler echocardiogram synthesis using a 3.5D-DM, 

conditioned on class label, temporal index, Doppler-mode FOV, and optional B-mode input. 

3.1 3.5D-Conditional Diffusion Model 

Our approach employed a conditional denoising diffusion probabilistic model (DDPM) 

[16] to generate paired B-mode and color Doppler echocardiograms. When available, 

the model conditioned on B-mode ultrasound images to synthesize the corresponding 

color Doppler echocardiograms from pure noise. If B-mode was unavailable, the model 

synthesized both B-mode and color Doppler echocardiograms from noise alone. Addi-

tional conditioning factors, including class label, temporal index, and Doppler-mode 

FOV, further guided the synthesis process. During training, a U-Net-based denoiser 

progressively refined noise-corrupted echocardiographic images by estimating and 
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removing Gaussian noise. The U-Net architecture had three layers with channels (128, 

256, 256), each containing residual blocks, and attention in the last two layers (Fig. 2). 

The model processed 128×128-pixel inputs over 32-frame videos, with image and 

frame sizes selected to accommodate memory constraints. B-mode conditioning was 

optional and could originate from the same or different views to depict anatomical 

structure. The denoising U-Net function is defined as 

𝑓𝜃 (𝑥𝑡 , 𝑡, 𝑦𝑐𝑙𝑠 , 𝑦𝑡𝑒𝑚𝑝 , 𝑀𝐵𝑚𝑜𝑑𝑒 , 𝑀𝐹𝑂𝑉), where 𝑥𝑡 is the noisy image at time step 𝑡, 

𝑀𝐵𝑚𝑜𝑑𝑒  denotes the B-mode ultrasound image used as a conditional input, and 𝑀𝐹𝑂𝑉 

corresponds to the Doppler-mode FOV. Class label 𝑦𝑐𝑙𝑠 (e.g., 0: Normal, 1: RHD, it 

can be adapted to other pathologies) was embedded into the model using a learned em-

bedding to condition the generation process. The temporal index 𝑦𝑡𝑒𝑚𝑝  was normalized 

by the total number of diffusion timesteps and used to condition multiple U-Net stages 

via the time embedding network. B-mode and Doppler-mode FOV images were con-

catenated with the input echocardiograms to provide image conditioning for the DM. 

The forward diffusion process followed a variance-preserving stochastic model, grad-

ually adding Gaussian noise at each timestep. The model learned to reverse this process 

by predicting and removing the noise component to reconstruct the original image 𝑥0 

from 𝑥𝑡. Training minimized the mean squared error between the predicted and actual 

noise, using the Adam optimizer (learning rate: 2.5e-5, batch size: 1) over 200 epochs. 

To improve sampling quality, inference-time computation was necessary, as high-

lighted in [17]. In our RHD detection application, overlap between normal and diseased 

distributions (Fig. 1) required iterative sampling and validation to ensure sample quality 

prior to classification. Multiple samples were generated and evaluated using a pre-

trained RHD classifier, which was used solely for filtering and not reused in down-

stream evaluation, ensuring no performance inflation. Samples were retained if the pre-

dicted label matched the conditioned class and included at least six frames during ven-

tricular systole—the dataset average. Otherwise, the process was repeated for up to 10 

iterations. If inconsistencies persisted, an expert manually reviewed the data to ensure 

clinical relevance and adherence to classification criteria. The misclassified samples 

were then added to the training data to improve model robustness. 

3.2 RHD Detection 

We demonstrated the utility of our general synthesis model for detecting a neglected 

disease with limited data, specifically RHD. A separate classifier was trained from 

scratch for RHD classification. We selected the PLAXC view due to its ease of acqui-

sition and minimal expertise requirement, making it practical for healthcare workers 

with limited echocardiography training. Our end-to-end network first analyzed ventric-

ular systolic frames—when the heart contracts and MR, a key RHD indicator, is most 

visible—using a ResNet-50 model. The selected systolic frames were then processed 

by an 18-layer 3D residual network (R3D-18) [18] to classify RHD presence. The R3D-

18 network consisted of 3D convolutional layers, four dense blocks, adaptive average 

pooling, and a fully connected layer for final classification. Both models were trained 

jointly for 150 epochs using the Adam optimizer (learning rate of 10−4) and a binary 

cross-entropy loss function, with a batch size of 3. 



6  P. Roshanitabrizi et al. 

3.3 Validation and Performance Metrics 

Our evaluation included two key components: (1) synthesized data quality assessment 

using Fréchet inception distance (FID) [19], Fréchet video distance (FVD) [20], and 

structural similarity index measure (SSIM) [21], and (2) RHD detection performance 

based on accuracy, sensitivity, and specificity. FID was measured using a pre-trained 

ResNet50 on RadImageNet [22], while FVD used a pre-trained R3D-18 on dataset D1. 

Since this is the first image synthesis framework for color Doppler overlaid with B-

mode ultrasound, no existing benchmarks are available for FID, FVD, or SSIM. We 

conducted ablation studies to evaluate the impact of each conditioning factor on the 

synthesis process. Our model was compared against 3D LDMs (adapted from [23]) and 

the latent video DM (LVDM) [6]. These methods were originally developed for 3D 

brain MRI and grayscale B-mode datasets; we adapted them for color Doppler. The 

RHD model was trained on 462 real cases from D1, tested on 188 real PLAXC videos 

from D2, and compared to a model trained on 1,414 synthesized PLAXC samples (480 

from D1, 466 from D2, and 468 from CA). To evaluate the impact of synthetic data, 

we started with 462 samples—matching the real dataset—and progressively increased 

the number (e.g., to 1,414) to enable significant gains in model performance. 

4 Experimental Results 

We implemented the network using PyTorch v2.5.1 and MONAI v1.4.0 [24] on an 

NVIDIA H100 80GB GPU. Training took 516 minutes for conditional DM and 850 

minutes for RHD detection. Inference times were 6.5 minutes per video (synthesis) and 

<1 minute for RHD detection on a CPU laptop. RHD model parameters were optimized 

over 80–200 epochs using input sizes of 128×128×3×32. This compact resolution pre-

served key diagnostic features, as confirmed by the downstream classification task. 

Other parameters were derived from prior work or adjusted for memory constraints.  

Quantitative Assessment of Synthesis: Table 1 quantifies the impact of key modeling 

components on synthesized data quality for A4CC and PLAXC views. Incorporating 

Doppler-mode FOV and temporal indexing improved FID, FVD, and SSIM, emphasiz-

ing their role in spatiotemporal modeling. The best performance was achieved by inte-

grating B-mode anatomical structure. Our approach significantly outperformed 3D 

LDM and LVDM adapted for color Doppler (p-values < 0.001, Wilcoxon signed-rank 

test), as shown in Fig. 3. The results demonstrate that although the outputs produced by 

LVDM and 3D LDM have anatomical correctness, their MR jets do not resemble real-

istic pathological features of RHD, whereas our model’s output exhibits characteristics 

of RHD, as confirmed by clinicians. Fig. 4 presents A4CC and PLAXC samples labeled 

as RHD and normal across different datasets, generated using dual synthesis (a, b), B-

mode conditioning (c, d, e, f, i), and view translation (g, h). 

RHD Detection: Using 462 real data points, the model achieved an accuracy of 0.72 

± 0.4, sensitivity of 0.73 ± 0.4, and specificity of 0.68 ± 0.5. Training with only 1,414 

synthetic data significantly improved performance, increasing accuracy to 0.82 ± 0.4, 

sensitivity to 0.79 ± 0.4, and specificity to 0.89 ± 0.3 (p-value = 0.008; McNemar test 

[25]). These results highlight the limitations of generalizing a model trained on a small, 
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single-site dataset acquired with one device (D1), especially when tested on data from 

a different device (D2) and a population with greater age variability. In contrast, syn-

thetic data introduced greater variability, helping bridge these gaps and significantly 

improving model generalization. Additionally, two expert cardiologists from Chil-

dren’s National Hospital independently and blindly reviewed 20 synthetic cases to as-

sess realism and classify them as RHD or normal. Without prior exposure to synthetic 

data, they were unable to distinguish real from synthetic cases and identified RHD with 

0.95 ± 0.05 accuracy, demonstrating strong clinical fidelity. 

5 Discussion 

RHD remains a major global health challenge, particularly in low- and middle-income 

countries with limited access to expert clinicians. Color Doppler interpretation is com-

plex due to image variability, intricate blood flow, and diverse pediatric presentations. 

A key hurdle is the scarcity of pathological data, with few MR cases and almost no 

aortic regurgitation cases. Additionally, currently no public pediatric color Doppler da-

tasets exist, limiting AI model development. To address these limitations, we intro-

duced a 3.5D-conditional DM for synthesizing high-quality echocardiographic data.  

We demonstrated the impact of our novel Doppler ultrasound data synthesis ap-

proach on early RHD detection in resource-limited settings. Our model is scalable and 

adaptable to other imaging views and cardiac conditions, making it valuable for rare 

disease detection in data-scarce settings. While we focused on generating color Doppler 

from B-mode ultrasound, our approach can also reversely synthesize B-mode from 

color Doppler. Although this is beyond the scope of this paper, it could be useful for 

training other disease models with anatomical pathology. A key innovation is multi-

factor conditioning, where B-mode ultrasound provides anatomical structure to ensure 

Doppler flow aligns with real cardiac anatomy. By leveraging public B-mode datasets, 

our approach generated pathological cases and enabled conversion to the PLAXC view, 

which is easier to acquire than A4CC, especially for non-expert clinical staff.  

Compared to state-of-the-art methods such as LVDM and 3D LDM, our 3.5D-con-

ditional DM is more computationally efficient, requiring fewer Giga Multiply-Accu-

mulate operations (GMac) [26] (112 vs. 502–19,890 GMac). LDMs require extensive 

parameter tuning and multi-stage training, while 3D U-Nets with volumetric convolu-

tions—suitable for static data like CT or MRI—demand significant memory and com-

pute resources. In contrast, our model embeds temporal indices for joint spatial–tem-

poral modeling without added computational overhead. Instead of frame-wise genera-

tion with temporal concatenation, we use temporal conditioning to enable dynamic in-

teractions and maintain temporal consistency with lower complexity. 

While our approach offers significant advantages, it also has limitations. The quality 

and consistency of synthesized Doppler flow depend on conditioning inputs. Lower-

quality B-mode images may introduce structural inconsistencies, while omitting B-

mode conditioning and relying solely on other factors may potentially affect realism 

across frames. Future work could explore temporal refinement techniques to enhance 

frame-to-frame consistency, particularly when B-mode conditioning is unavailable. We 
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also aim to estimate the optimal number of synthetic samples for robust classification 

and to assess performance limits. Additionally, we plan to extend this methodology to 

handheld ultrasound devices to broaden clinical utility through low-cost technology. 

Table 1. Quantitative evaluation of synthesized data compared to real data from D1. 

Methods 

Multi-Factor Conditioning 

View Output FID↓ FVD ↓ SSIM ↑ Class 

 

Doppler 

FOV 

Temp. 

Index 

B-

mode 

2D-DM ✔    PLAXC Doppler 30.28±8.5 5.66±0.2 0.55±0.1 

2D-DM ✔ ✔   PLAXC Doppler 29.04±8.7 3.73±0.5 0.54±0.1 

2.5D-DM ✔ ✔ ✔  PLAXC Doppler 23.93^±8.4 3.26±0.2 0.58±0.1 

3.5D-DM* ✔ ✔ ✔  PLAXC Doppler, B-mode 23.4±6.5 5.41±0.8 0.58±0.1 

3.5D-DM ✔ ✔ ✔ ✔ PLAXC Doppler 8.69±2.5 2.77±0.2 0.78±0.1 

3.5D-DM ✔ ✔ ✔ ✔ A4CC Doppler 8.87±3 1.05±0.2 0.75±0.1 

3D LDM  ✔    PLAXC Doppler 41.6^±10 10.67±0.7 0.49±0.1 

LVDM ✔    PLAXC Doppler 30.11^±8.7 7.05±0.3 0.51±0.1 

 *Dual-channel synthesis; ^p-values < 0.001, compared to our approach; Temp.: Temporal. 

 

 

Fig. 3. Synthesized RHD samples from our approach, 3D LDM, and LVDM. The results from 

LVDM and 3D LDM lack RHD characteristics, as indicated by the arrow. 

 

 
(a) D1, RHD, Dual synthesis (b) D1, Normal, Dual synthesis (c) D1, RHD, B-mode condition 

 
(d) D2, RHD, B-mode condition (e) D2, Normal, B-mode condition (f) D2, Normal, B-mode condition  

 
(g) CA, RHD, View translation* (h) CA, Normal, View translation* (i) CA, RHD, B-mode condition  

Fig. 4.  Synthesized PLAXC and A4CC samples labeled as RHD or normal, from D1 (a–c), D2 

(d–f), and CA (g–i). *The B-mode image in (i) served as the input for generating PLAXC views 

in (g) and (h). 
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6 Conclusion 

We introduced a 3.5D-conditional diffusion model to synthesize dual-channel color 

Doppler echocardiograms coupled with B-mode ultrasound, addressing cardiac data 

scarcity in resource-limited settings. To our knowledge, this is the first model to gen-

erate color Doppler overlaid on B-mode, capturing both structural and functional car-

diac features. By incorporating temporal indexing, class label, and Doppler-mode FOV 

conditioning, the model produced clinically relevant data across imaging conditions 

and views. It synthesized paired B-mode and Doppler sequences—both healthy and 

pathological—as well as new acquisition views with clinical utility. Applied to RHD 

detection, the synthetic data improved model performance on real-world datasets. This 

approach enables high-fidelity synthesis of rare pathological cases, advancing AI-

driven diagnostics and broadening access to cardiac care. Upon institutional approval, 

the synthetic data and model will be released at: https://github.com/Pediatric-Acceler-

ated-Intelligence-Lab/Dual-Channel_Color_Doppler_Synthesis.  
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