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Abstract. The pursuit of decision safety in clinical applications high-
lights the potential of transparent methods in medical imaging. While
concept-based models offer local concept explanations (instance-level),
they often neglect the global decision logic (dataset-level). Moreover,
these models often suffer from concept leakage, where unintended in-
formation within soft concept representations undermines both inter-
pretability and generalizability. To address these limitations, we propose
Concept Rule Learner (CRL), a novel framework to learn Boolean
logical rules from binary visual concepts. CRL employs logical layers
to capture concept correlations and extract clinically meaningful rules,
thereby providing both local and global interpretability. The results from
two tasks demonstrate that CRL achieves competitive performance with
existing interpretable methods while improving generalizability to out-of-
distribution data. The code of our work is available at https://github.
com/obiyoag/crl.
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1 Introduction

Deep learning models, especially those operating as black boxes, have shown
great promise in medical imaging applications [11,14,13]. However, the high stan-
dards of trust and accountability required in healthcare have spurred growing
interest in transparent models [24,20], where "explainability" and "logic" have
been emphasized as two aspects by the FDA principles [23]. "Logic" refers to the
decision rules underlying model predictions, similar to clinical practice, where
medical professionals assess symptoms and make decisions based on established
clinical guidelines or rules. While recent research increasing focuses on "explain-
ability" via concept explanations, less attention has been paid to "logic" rules
for medical imaging applications.
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Concept Bottleneck Models (CBMs) [12] are a prevalent framework for pro-
viding concept explanations. In CBMs, a concept predictor generates explan-
able concepts, which are then used by a label predictor to make final predic-
tions. Based on CBMs, Concept Embedding Models (CEMs) [7] enhance predic-
tive performance by employing high-dimensional concept embeddings. However,
these models only provide explicit local explanations by focusing on individ-
ual predictions, detailing how predicted concepts influence each decision [17,27].
They offer insights for particular instances but may not fully capture the overall
decision logic across the entire medical dataset. For more comprehensive inter-
pretability, integrating both local concept explanations and global logical rules is
essential [28,21] for transparent medical decision-making. A recent work, named
Deep Concept Reasoner (DCR) [2], explores to extract syntactic logical rules
from concept embeddings. However, because DCR relies on fuzzy logic and con-
cept embeddings, its decision-making process is less transparent.

Moreover, the above concept-based models suffer from concept leakage [15],
where the label predictors inadvertently exploit unintended image information
from soft concepts (i.e., probabilities or embeddings). The leakage compromises
both interpretability and generalizability [16]. For interpretability, predictions are
influenced not only by the intended concepts but also by image information en-
coded within the soft concept representations. The concept predictor no longer
needs to faithfully predict the concepts for accurate label predictions. Regarding
generalizability, reliance on leaked information may lead to overfitting, rendering
the models less robust to distribution shifts. Hard CBMs, which use binary con-
cepts (i.e., 0 and 1) for the label predictor, reduce leakage as these binary values
inherently carry less extraneous information. However, they often exhibit poor
performance as they predict concepts independently, neglecting the correlations
between concepts.

To address the above limitations and achieve transparent medical decision-
making, we propose Concept Rule Learner (CRL), a framework to learn
Boolean logical rules from medical data. Inspired by prior works on neuro-
symbolic learning [6,25,26], CRL extends logical layers to capture correlations
between binary visual concepts, mitigating the issue of concept leakage. Each
logical layer comprises a conjunction layer and a disjunction layer, which per-
form AND and OR operations, respectively. The connections across these layers
generate flexible decision rules, and the final prediction for an input image is de-
rived by aggregating the contributions of triggered rules through linear weights.
By making decisions based on domain-invariant logical rules, CRL not only in-
corporates global interpretability, but also improves generalizability to unseen
domains. Our main contributions can be summarized as follows:

• We propose CRL, a novel framework that learns Boolean logical rules from
binary visual concepts to model concept correlations, while mitigating the
issue of concept leakage.

• CRL not only delivers concept explanations for individual predictions but
also extracts decision rules for the entire datasets, thereby unifying local and
global interpretations.
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Fig. 1: The architecture of Concept Rule Learner (CRL). CRL is a composition
of four functions (f ◦ r ◦ q ◦ g), where g(·) represents the concept predictor, r(·)
denotes a stack of logical layers, q(·) means discretization and f(·) corresponds
to a linear layer. The decision interpretation is presented in the dashed box,
illustrating how concepts and rules contribute to the final prediction.

• We evaluate the effectiveness of the proposed method on two medical image
classification tasks. The experimental results demonstrate that our approach
could extract meaningful concept logical rules and exhibits superior gener-
alizability to the unseen dataset.

2 Method

2.1 Model Architecture

Given an image x ∈ Rn annotated with a task label y ∈ {1, · · · , L} and
K concept labels c ∈ {0, 1}K , our objective is to develop a Concept Rule
Learner (CRL) capable of performing medical image classification through
concept-driven logical rules. As illustrated in Fig. 1, the CRL framework is a
quadruple of functions (g, q, r, f), whose composition (f ◦ r ◦ q ◦ g) pre-
dicts the label based on the derived concepts and rules. The first function
g : Rn → [0, 1]K , referred to as the concept predictor, learns a mapping from the
input image x to a set of concept activations ĉ = g(x) ∈ [0, 1]K , where ĉi repre-
sents the probability supporting the presence of the i-th concept. The second
function q : [0, 1]K → {0, 1}K serves as a binarizer that converts the concept
activations into binary values. The third function r : {0, 1}K → {0, 1}R, con-
sists of a series of logical layers, mapping the activated concepts to a set of rule
activations r = r(q(ĉ)) ∈ {0, 1}R, where R denotes the total number of extracted
logical rules. A rule activation ri = 1 indicates that the i-th rule is activated
for the input image x and ri = 0 indicates otherwise. The fourth function
f : {0, 1}R → RL, represents the final linear layer, which learns the mapping
from the activated logical rules to the task logits ŷ = f(r̂) ∈ RL.
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Fig. 2: (a) An example of two adjacent logical layers, where the directed arrows
indicates the presence of the connections between nodes. The corresponding rules
could be derived by analyzing the connections. (b) The computational graph of
CRL. Arrows with solid lines represent forward pass while arrows with dashed
lines represent backpropagation.

2.2 Logical Operation Modelling

To learn logical rules from concept activations, the function r(·) adopts a series
of logical layers to model the concept-based rules with Boolean logic. Let N l

denote the l-th logical layer, where nl
j represents the j-th node within the layer.

The output of layer N l is a vector containing the values of all nodes, denoted
as nl. As shown in Fig. 2a, each logical layer N l consists of a conjunction layer
and a disjunction layer, denoted by Al and Bl, respectively. The i-th node in the
conjunction layer, denoted as ali, represents the conjunction (AND operation) of
nodes from the preceding layer connected to it. Conversely, the i-th node in the
disjunction layer, denoted as bli, encapsulates the disjunction (OR operation) of its
connected predecessors. Formally, the nodes in the conjunction and disjunction
layers are defined as:

a
(l)
i =

∧
W

(l,0)
i,j =1

nl−1
j , bli =

∨
W

(l,1)
i,j =1

nl−1
j , (1)

where W (l,0) denotes the adjacency matrix of the conjunction layer Al and the
previous layer N l−1, with W

(l,0)
i,j ∈ {0, 1}. Specifically, W (l,0)

i,j = 1 indicates the
presence of an edge connecting ali to nl−1

j , while W (l,0)
i,j = 0 indicates the absence.

Similarly, W (l,1) is the adjacency matrix of the disjunction layer Bl and N l−1.
These adjacency matrices are treated as the weight matrices for the logical layers,
analogous to weight matrices in neural networks. The output of the l-th layer
is the concatenation of the outputs of the conjunction and disjunction layers,
i.e., nl = al ⊕ bl, where al and bl are the outputs of Al and Bl respectively.
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Fig. 2a illustrates an example of two adjacent logical layers, where the directed
arrows indicates the presence of the connections between nodes. By examining
the weights W (l,0) and W (l,1), we could derive the corresponding rules in both
conjunctive and disjunctive normal forms.

2.3 Training Paradigm

While the logical layers are capable of expressing Boolean operations, their non-
differentiable structure makes CRL challenging to optimize. To address this issue,
we introduce continuous logical layers in training. These layers are differentiable
and share the same parameters as the discrete counterparts, enabling end-to-end
optimization while preserving the interpretability of the original design.

Let W̄ (l,0), W̄ (l,1) ∈ [0, 1] denote the continuous weight matrices of conjunc-
tion and disjunction layers. To make Eq. (1) differentiable, we leverage the logical
activation functions introduced by [19]:

Conj(n, W̄i) = P (

N∏
j=1

Fc(nj , W̄i,j)), Disj(n, W̄i) = 1− P (

N∏
j=1

Fd(nj , W̄i,j)),

where N is the number of nodes, Fc(n,w) = 1 − w(1 − n) and Fd(n,w) =
1 − n · w. If n and Wi are both binary vectors, then Conj(n,Wi) =

∧
Wi,j=1 nj

and Disj(n,Wi) =
∨

Wi,j=1 nj . P (x) = 1/(1 − log x) is a projection function to
prevent gradients vanishing. After using continuous weights and logical activa-
tion functions, the nodes in continuous logical layers are defined as follows:

āli = Conj(n̄l−1, W̄
(l,0)
i ), b̄li = Disj(n̄l−1, W̄

(l,1)
i ).

By employing continuous logical layers, CRL facilitates end-to-end training.
The computational graph of CRL is illustrated in Fig. 2b. As shown, the con-
cept predictor generates concept activations ĉ = g(x) from input images. The
binarized concept activations are passed to both the discrete and continuous
logical layers to generate the task predictions given by ŷ = f(r(q(ĉ))|W ) and
ȳ = f(r(q(ĉ))|W̄ ). The objective function is defined as:

L = Lt(ŷ, y) + Lc(ĉ, c) + λ||W̄ ||2, (2)

where Lt is the cross-entropy loss, Lc represents the mean cross-entropy loss
across all training concepts and λ is the regularization hyperparameter that
controls the complexity of the logical layers. For backpropagation, as indicated by
the dotted arrow in Fig. 2b, the gradients ∂Lt/∂ŷ are grafted onto the backward
pass of f(r(·|W̄ )). To address the non-differentiability of the binarizer, we utilize
a Straight-Through Estimator (STE) [10], which approximates the gradients for
the discretization.
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2.4 Decision Interpretation

As illustrated in the dashed box of Fig. 1, CRL provides concept explanations
for individual predictions as well as global logical rules for the entire dataset,
thereby integrating both local and global interpretability. After training, the
weights of logical layers r(·) are analyzed to summarize R logical rules, where R
depends on the number of nodes and the hyperparameter λ in Eq. (2). During
inference, the concept predictor g(·) first extracts concepts from images and
matches them against the learned rules. Each rule is associated with a set of
class-specific weights from the linear layer f(·). When a rule is triggered by
a match (bold in Fig. 1), its corresponding weights are added to the overall
class logits ŷ. The final prediction is determined by the cumulative logits, which
aggregate the contribution of all matched rules.

3 Experiments

3.1 Experimental Setup

Tasks and datasets: To evaluate the proposed method across different medical
scenarios, we assess two tasks: skin disease diagnosis and white blood cell (WBC)
classification. Skin disease diagnosis: We employ the Fitzpatrick17k (F17k)
dataset [9] and the Diverse Dermatology Images (DDI) dataset [4], incorporating
concept annotations from the SkinCon dataset [5]. The SkinCon dataset com-
prises 48 concepts annotated by board-certified dermatologists. Following the
approach in [18], we focus our training and testing to images labeled as Benign
(Ben) or Malignant (Mal). WBC classification: We utilize the PBC dataset [1],
along with the concept annotations from the WBCAtt dataset [22]. The WBCAtt
dataset contains 24 morphological attributes, and the classification includes five
distinct classes.

Implementation details: We employ ResNet-34 pretrained on the ImageNet
dataset, as the backbone network. The balance parameter between concept and
task loss is set to 1. We use the AdamW optimizer with an initial learning rate of
5× 10−5 and a weight decay of 0.01. The learning rate decays to zero following
a cosine scheduler. Models are trained for 300 epochs with a batch size of 64.
CRL is implemented with two logical layers, each comprising 256 nodes. The
hyperparameter λ set to 5 × 10−6 to control the complexity of the rules. For
evaluation, we report the average accuracy (ACC) and F1 score (F1) for both
concept prediction and diagnosis tasks. For skin disease diagnosis, we perform
5-fold cross-validation. For WBC classification, we adopt the original data split
from [22], conducting experiments with three different random seeds.

3.2 Results

Model utility analysis: To showcase the classification utility of the proposed
method, we compare CRL with other concept-based methods on F17k and PBC
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Table 1: Performance comparison on skin disease diagnosis and WBC classifica-
tion tasks. Bold text indicates the best results, while underlined text denotes
the second-best results. The symbol ⋆ denotes methods employ binary concept
values, while † indicates methods with global interpretability.

Dataset Method Concept Metric Diagnosis Metric
ACC(%) F1(%) ACC(%) F1(%)

F17k

CBM [12] 91.41±0.19 59.44±0.97 76.37±3.45 76.30±3.45

align-CBM [18] 89.77±0.52 58.98±1.41 75.93±2.39 75.83±2.41

CEM [7] 91.85±0.55 59.11±2.06 76.26±2.59 76.17±2.52

evi-CEM [8] 92.04±0.80 58.65±1.71 76.47±1.69 76.39±1.66

hard-CBM⋆ 86.36±1.09 49.57±0.48 73.51±2.94 73.43±2.92

DCR† [2] 91.03±0.80 49.40±1.00 75.05±2.12 74.97±2.12

CRL⋆† 92.80±0.47 52.39±0.28 75.95±3.09 75.90±3.08

PBC

CBM [12] 95.21±0.10 91.65±0.15 98.93±0.14 98.44±0.22

align-CBM [18] 95.01±0.23 89.95±0.59 99.14±0.05 99.25±0.52

CEM [8] 94.98±0.34 90.86±0.69 99.43±0.12 99.23±0.18

evi-CEM [8] 94.44±0.91 89.18±2.09 99.57±0.03 99.42±0.03

hard-CBM⋆ 64.53±2.42 56.24±2.74 98.22±0.48 97.52±0.73

DCR† [2] 92.79±0.43 82.92±0.64 98.93±0.32 98.47±0.49

CRL⋆† 95.32±0.26 90.51±0.73 98.67±0.25 98.03±0.42

datasets. The comparative methods include CBM [12], align-CBM [18], CEM [7],
evi-CEM [8] and DCR [2]. Among these, align-CBM integrates clinical knowledge
to prioritize the most relevant, while evi-CEM employs evidential learning to
model concept uncertainty. Hard-CBM, which serves as a baseline, only accepts
binary concepts without logical layers. The comparison results are presented in
Table 1. From the results, we observe that CRL achieves comparable predictive
performance with other CBM variants, though it exhibits a performance trade-off
compared to methods based on concept embeddings. Notably, when comparing
CRL and hard-CBM, both of which utilize binary concepts, CRL significantly
outperforms hard-CBM. This improvement can be attributed to the logical layers
in CRL, which capture the concept correlations with logical operations.

Model generalizability analysis: To evaluate generalizability, we assess the
out-of-domain (OOD) performance of the models on the unseen DDI dataset,
using models trained on the source F17k dataset. As reported in Table 2, we can
observe that concept models relying on soft concepts (probabilities or embed-
dings) exhibit relatively large performance drops, whereas methods employing
binary concept values experience smaller declines. This suggests that binary
concepts could help mitigate concept leakage. Notably, although both CRL and
hard-CBM utilize binary concepts, CRL achieves a diagnostic ACC of 73.46,
outperforming the second-best method by 9.21 while exhibiting the smallest
performance drop. This improvement can be attributed to the domain-invariant
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Table 2: Performance comparison on the unseen DDI dataset. Bold text indicates
the best results, while underlined text denotes the second-best results. The sym-
bol ⋆ denotes methods employ binary concept values, while † indicates methods
with global interpretability.

Method
OOD Performance↑ Performance Drop↓

Concept Metric Diagnosis Metric Concept Metric Diagnosis Metric
ACC(%) F1(%) ACC(%) F1(%) ACC(%) F1(%) ACC(%) F1(%)

CBM [12] 90.59±0.27 53.09±0.44 62.36±4.05 57.49±2.02 0.82 6.35 14.01 18.81
align-CBM [18] 89.34±0.25 51.47±0.22 63.13±4.01 59.66±2.18 0.33 7.51 12.80 16.17
CEM [7] 91.66±0.26 53.21±0.57 62.39±2.59 57.42±2.01 0.19 5.90 13.87 18.75
evi-CEM [8] 91.35±0.20 52.17±0.64 64.25±2.04 58.82±1.62 0.69 6.48 12.12 17.48
hard-CBM⋆ 84.63±1.20 48.48±0.28 63.77±2.35 56.96±1.52 1.73 1.09 9.74 16.47
DCR† [2] 90.97±0.49 47.89±0.72 62.23±4.09 57.50±2.35 0.06 1.51 12.82 17.47
CRL⋆† 92.14±0.20 51.78±0.19 73.46±2.36 63.42±1.27 0.66 0.61 2.49 12.48
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Fig. 3: An illustration of concept logical rules for both skin disease diagnosis task
(left) and WBC classification (right). Note: We only present the rule weights and
logits of Neutrophil (Neut) and Lymphocyte (Lymph) for WBC classification.

logical rules extracted by logical layers, which enhance robustness to distribution
shifts.

Model interpretability analysis: To illustrate that CRL could generate
meaningful logical rules, we present the rules obtained from both skin disease
diagnosis and WBC classification tasks, as illustrated in Fig. 3. For skin disease
diagnosis, we observe that concepts Telangiectasia, Ulcer and Crust are asso-
ciated with Malignant, aligning with established clinical knowledge [3]. In case of
WBC classification, the rules indicate that Lymphocytes are characterized by a
High NC ratio and a Round nucleus, while Neutrophils typically exhibit Pink
granules and Dense chromatin, consistent with clinical observations [22]. The
case studies demonstrate that CRL can effectively extract concept-based logical
rules that are clinically meaningful, offering both local concept explanations and
global rule explanations for the entire medical dataset.
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4 Conclusion

This paper introduces CRL, a framework for interpretable medical image classi-
fication that mitigates concept leakage and unifies local and global interpretabil-
ity. By employing binary concepts and learnable logical layers, CRL effectively
models concept correlations and extracts clinically meaningful decision rules.
Experiments on two medical image classification tasks demonstrate that CRL
achieves competitive performance and exhibits superior generalizability to un-
seen data.
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