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Abstract. It is challenging to discriminate autism spectrum disorder
(ASD) from a highly heterogeneous database, because there is a great
deal of uncontrollable variability in the data from different sites. Re-
cently, prompt learning has received considerable attention in domain
adaptation as a promising solution. However, its application to graph
data like multi-site brain networks has not been fully studied. It faces two
major challenges: (1) complex graph structure; and (2) inter-individual
variability. To overcome the issues, we propose a novel prompt-tuning
paradigm for multi-site brain network analysis (BrainPrompt) using func-
tional magnetic resonance imaging (fMRI). Specifically, we introduce
two tunable soft prompts: (1) a mask prompt to prune noisy edges
while preserving important connections, and distill it to reduce domain-
specific biases; (2) sample prompts to capture inter-individual variations.
Our model outperforms other models on the ABIDE dataset, especially
at sites with limited samples (e.g., the Stanford site, which has only
39 samples). BrainPrompt achieves a 35.88% improvement in accuracy
compared to the state-of-the-art method, highlighting its superiority in
small sites. Furthermore, our results demonstrate the interpretability
and generalization of the proposed method. Our code is available at
https://github.com/zliuzeng/BrainPrompt.

Keywords: Autism Spectrum Disorder - Domain Adaptation - Multi-

Site Brain Networks - Prompt Learning.

1 Introduction

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disor-
der with significant individual variability influenced by demographic, cognitive,
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and emotional factors [I5]. Moreover, the current multi-site fMRI data used
for diagnosis brings in heterogeneous distribution among multi-site data due
to differing acquisition protocols [9]. These two types of heterogeneity jointly
degrade the performance of ASD diagnostic models [6/14]. One common ap-
proach to address site-specific heterogeneity is traditional transfer learning. For
instance, maL.RR [23] utilizes low-rank regression to mitigate domain-specific bi-
ases, demonstrating notable performance. These methods typically involve fine-
tuning all or part of the model parameters using target domain training data.
Despite significant progress, they remain insufficiently effective and efficient. As
model complexity increases, fine-tuning the pre-trained model becomes compu-
tationally intensive and time-consuming [5]. Particularly for the domains with
limited samples, traditional transfer learning is prone to overfitting, leading to
performance degradation. Furthermore, these methods fail to account for the
inter-individual variability in ASD diagnosis.

Prompt learning [§] is an emerging paradigm in natural language processing
(NLP) that adapts pre-trained models to downstream tasks by updating only
a small subset of parameters. This approach is particularly advantageous when
only limited samples are available, as it effectively guides the model to capture
domain-specific knowledge by designing appropriate prompts, which require very
few labeled examples [11]. Specifically, prompts are flexible, adjustable instruc-
tions or signals that direct the model’s focus toward the relevant task or domain,
without requiring extensive retraining of the model itself [7]. Fig. [I{c) compares
the performance results of traditional transfer learning and our method. Com-
pared to TP-MIDA [12] and LRCDR [17] (Traditional transfer learning), Brain-
Prompt (Our method) achieves superior performance with lower costs. Inspired
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Fig. 1. Comparison of the two methods. Fig. [[[a)-(b): Illustration of traditional trans-
fer learning and our method. Fig. c): Performance of BrainPrompt compared with
the state-of-the-art multi-site domain adaptive methods, i.e. TP-MIDA and LRCDR
on the sites with the smallest sample sizes of 27,30 and 34, respectively.

by the success of prompt learning in NLP tasks [16], we attempt to apply prompt
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learning to multi-site brain network analysis. However, its direct application faces
two major challenges:

(1) In contrast to language, brain networks are sparse and contain noisy
edges [22]. Therefore, it may cause inaccurate results if the prompt design ne-
glects the inherent structure of brain networks.

(2) Patients with ASD exhibit significant individual variability in the con-
nectivity pattern distribution of functional regions [15]. This variability means
that even a well-trained prompt may not generalize across a large population in
ASD diagnosis. Designing adaptive sample prompts to capture inter-individual
variations in brain networks is critical.

To overcome these limitations, we propose a novel Prompt-tuning paradigm
for multi-site Brain network analysis, named BrainPrompt. First, we pre-train
the baseline model in a supervised manner on multiple source domains. Next,
we design a tunable source mask prompt that adaptively prunes noisy edges
while preserving discriminative connections on each source domain. Moreover,
we train source domain-specific embeddings for each source domain using Low-
Rank Adaptation [10]. Finally, we initialize the target mask prompt by distilling
knowledge from multiple source mask prompts, effectively reducing site hetero-
geneity and enhancing cross-domain knowledge transfer. Meanwhile, we employ
a cross-domain attention mechanism to transform source domain-specific em-
beddings into tunable target sample prompts that dynamically adapt to the
domain-adaptive distribution biases and capture inter-individual variability. Our
contributions are summarized as follows:

— We propose a novel prompt-tuning paradigm for multi-site brain network
analysis. To the best of our knowledge, this is the first attempt to leverage
prompts for multi-site brain network analysis.

— We introduce the mask prompt and sample prompts to explore the topolog-
ical structure of brain networks and identify inter-individual heterogeneity.

— We evaluate BrainPrompt on the public Autism Brain Imaging Data FEx-
change (ABIDE) dataset. The experimental results demonstrate the superior
performance of BrainPrompt, especially at sites with limited samples (e.g.,
Stanford site, which has only 39 samples). BrainPrompt achieves 35.88%
and 41.19% accuracy improvements compared to TP-MIDA and LRCDR
methods at the Stanford site.

2 Method

The framework of our proposed BrainPrompt is shown in Fig. [2l BrainPrompt
operates in three stages: Stage 1: We pre-train the baseline model on mul-
tiple source domains. Stage 2: We adopt a source mask prompt that adap-
tively prunes noisy edges while preserving discriminative connections for each
source domain. Moreover, we train source domain-specific embeddings to cap-
ture domain-specific information on each source domain. Stage 3: To reduce
site heterogeneity and ensure efficient cross-domain knowledge transfer, we ini-
tialize the target mask prompt by distilling knowledge from multiple source
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Fig. 2. Illustration of (i) Pretraining, (ii) Source domain adaptation, including con-
structing source mask prompts and domain-specific embeddings, and (iii) Target
prompt training, including training target mask prompt and sample prompts.

mask prompts. Meanwhile, we integrate multiple source domain-specific embed-
dings through the cross-domain attention mechanism to generate target sample
prompts that dynamically adapt to the domain-adaptive distribution biases and
capture inter-individual variability.

2.1 Pretraining

We train the baseline model in a supervised manner by mixing data from all
source domains. The model comprises a transformer encoder and a multi-layer
perceptron (MLP) classifier. Given multiple source training data (X*) and labels
(Y%), the model is optimized as arg ming Le.(he(X®),Y?), where L.. denotes
the cross-entropy loss and heg(+) represents the model’s prediction, with © con-
sisting of two components: the parameters of the encoder and an MLP classifier.

2.2 Source domain adaptation

Source mask prompt: Considering the complexity of brain network struc-
tures, we design a mask prompt P, € RM*M for each domain to identify
disease-related edges. We apply L; regularization to ensure the sparsity of Py;.
The mask prompt is incorporated into the input as &; = z; © o(Py), where ®
denotes element-wise multiplication, o(-) represents the sigmoid function, and
z; = {xtjxl € RM*M t € [1,T]}, with 2! denoting the adjacency matrix at time
step t for the i-th sample. Note that P, is consistent across all time steps. We
learn the source mask prompt Pi} for each source domain by minimizing the
cross-entropy loss and L; regularization while freezing the pre-trained model.
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Source domain-specific embeddings: To adaptively capture domain-specific
information, we train domain-specific embeddings Ep = {E?, E*, E"} € RP*d
using Low-Rank Adaptation on each domain. These embeddings are incorporated
into the linear projections of @), K, and V in the pre-trained model’s multi-head
self-attention. The update is defined as O}, = Oy + AOy, with U € {Q, K, V},
AOy representing the learnable parameters of Ep, and Oy € RP*? denoting
the original linear projection parameters. The source domain-specific embeddings
E% are randomly initialized as low-rank matrices and optimized via the cross-
entropy loss while freezing the pre-trained model on each source domain.

2.3 Target prompt Training

Target mask prompt Initialization: To efficiently reduce site heterogene-
ity and improve cross-domain knowledge transfer, we distill a fused prompt
from multiple source domains and use it to initialize the target mask prompt.
Specifically, each sample is processed using the pre-trained model with a mask
prompt to obtain its hidden representation. Moreover, we compute the cosine
distance [19] between the centroids of these representations for each source do-
main and the target domain, which defines domain-domain similarity scores
as w = {wy,wa,..., Wy}, where m is the number of source domains. Then,
we aggregate the predictions from all source domains by weighting each source
prediction with its similarity. This aggregated prediction is defined as:

. 1 & ;
H(y;|P3;) = Ezwi'HS(yilpjw) (1)
=1

where H,(y;|P%;) is the prediction of the i-th sourch domain. We minimize the
Kullback-Leibler (KL) divergence [2I] between the aggregated source predictions
and the fused prompt’s predictions. This encourages the fused prompt to align
with the aggregated source distribution, facilitating the extraction of consensus
knowledge and suppressing domain-specific noise. Finally, we initialize a mask
prompt qu\} using the fused prompt Pp for the target domain as Eq. :

P, =Pl +aPp (2)

where « denotes a weight constrained to lie within the range [0, 1]. We fine-tune
P%} along with other prompts on the target domain.

Target sample prompts: To capture individual variability, we propose sample
prompts for each subject on the target domain. Since each domain has a unique
contribution to the target samples, we compute sample-domain similarity
scores between target domain samples and all source domain-specific embeddings
and then interpolate those embeddings to generate target sample prompts.
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Cross-domain Attention. BrainPrompt controls the influence of the set of source
domain-specific embeddings on the final sample prompt by calculating sample-
domain similarity scores. For the i-th target sample,

B f(wi)

Wi,j = equ_j)'f(m%) + 221:1 eE’B.f(mzz)

(3)

where u; j = {u ;, uﬁj, uy;} € R!'*™ denotes the scores of the i-th subject over
the j-th source domain and the function f,,(-) = Wy(o(Wa(+))) represents the
non-linear mapping, where W, € R¥P and Wy € RP*? are the learnable pa-
rameters. Eg and E’, are the domain-specific embeddings for the target domain

and the j-th source domain, respectively.

Target prompt Interpolation. Given the set of source domain-specific embeddings
E% and the target sample x;, the final sample prompts are defined as follows:

PY) = Fo(x;, E3) (4)

where Py) = {PQ(i),Pk(i)7PU(i)} € RP*d represents the sample prompts for
the i-th subject, Fig(-) denotes the target prompt interpolation function with ©
consists of two components: the parameters of f,,(-) and target domain-specific
embeddings E'. The specific process is described by P\ = ET, +30 ui B,
where u; ; are the scores generated by Eq. . With the pre-trained model frozen,
we fine-tune P1,, EX, and f,(-) to generate the final prediction.

3 Experiments

3.1 Dataset and experimental setup

The ABIDE dataset [4] contains resting-state fMRI and clinical data from 1,112
subjects across 17 sites. For reproducibility, we used the version from the Prepro-
cessed Connectome Project. After manual artifact removal by three clinicians, we
obtained a subset of 1,035 high-quality MRI images with phenotypic data. The
rs-fMRI data was processed using the Configurable Pipeline for the Analysis of
Connectomes (C-PAC) [2], including slice-timing correction, image realignment,
and nuisance regression. Time series of average voxel signals were extracted from
each brain region defined by the Anatomical Automatic Labeling (AAL) atlas
with 116 ROIs.

We perform 5-fold cross-validation on the ABIDE dataset for ASD diagnosis,
treating one site as the target domain and the rest as sources. For each subject’s
time series, we use a sliding window and masking mechanism for segmentation,
followed by Pearson Correlation Coefficients to compute the correlation. Subjects
from the OHSU site are excluded due to their short time series.
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Fig.3. Comparison of BrainPrompt with the state-of-the-art methods on the four
largest sites. We regard fine-tuning as the baseline, which indicates that the baseline
model, consisting of a transformer-encoder and MLP, is pre-trained on the source do-
main and then fine-tuned on the target domain.

3.2 Results and Discussion

Comparison with state-of-the-art Methods: We evaluate BrainPrompt on
the four largest sites (NYU, UM, UCLA, USM). Except GroupINN [24] which
is non-domain adaptation, we focus on the comparison with five state-of-the-art
domain adaptation methods: TP-MIDA [12], maLRR [23], DG-DMSGCN [3],
LG-DADA [1], and LRCDR [I7]. From Fig. |3| we observe that BrainPrompt
outperforms all the comparable methods. Specifically, BrainPrompt significantly
outperforms the previous best methods, i.e., TP-MIDA and LRCDR, achieving
improvements of 6.44%, 3.42%, 3.37%, and 8.33%, and 2.01%, 7.10%, 2.22%, and
10.03% in terms of accuracy on NYU, UCLA, UM, and USM sites, respectively.
This demonstrates the effectiveness of our method in ASD diagnosis. Addition-
ally, our method updates only the prompt (1.95M parameters),which is 80.52%
fewer than native fine-tuning method that updates all parameters (10.01M) in
the target domain. Compared to other methods (e.g., maLRR: 8.09M; LRCDR:
12.51M), our model achieves competitive efficiency.

Ablation study: We also individually removed the proposed modules (-w/o
P ;: without the mask prompt, -w/o DDS: without the domain-domain similar-
ity, i.e. assuming equal similarity across domains, -w/0 P;: without the sample
prompts) from BrainPrompt to verify the effectiveness of each component. From
Fig.[3] we conclude that the proposed components are necessary and complemen-
tary, as they collaborate effectively and contribute positively to ASD diagnosis.

Evaluation on sites with limited samples: In addition to the evaluation of
the four major sites, we also assessed our model on multiple sites with limited
samples. In each fold of 5-fold cross-validation, each site is individually split into
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Table 1. Performance of BrainPrompt compared with four state-of-the-art methods
on the sites with limited samples. Avg: the average result across all sites. Num: the
number of samples at different sites. The best results are boldfaced and the second-best
results are underlined.

Site Num ACC(AUC)

maLRR LG-DADA TP-MIDA LRCDR BrainPrompt
CMU 27 58.45(60.67) 65.54(68.32) 64.11(65.11) 75.74(76.58) 82.00(80.66)
SBL 30 65.23(62.45) 61.01(63.12) 62.62(60.12) 70.36(68.67) 73.43(73.33)
Olin 34 57.23(60.50) 66.25(67.11) 68. 24(69 23) 78.65(74.28) 82.00(76.83)
SDSU 36 63.78(62.12) 65.65(64.80) 68.13(70.51) 78(70.39) 81.10(86.10)
Caltech 37 61.01(60.90) 62.42(64.00) 61 11( 78) 76(65.28) 72.27(70.66)
Stanford 39 60.25(62.28) 64.22(65. 11) 68.11(66.22) 65.55(64.47) 92.55(92.50)
Trinity 47  62.78(64.21) 68.33(71.23) 63 32( 11) 79(69.65) 76.04(72.50)
KKI 48  65.21(64.10) 67.74(6 8 5) 65. 95(66 02) 70 4(%) 74.70(75.04)
MaxMum 52 62.02(60.18) 63.08(66.91) 60.25(61.35) 68.14(62.71) 70.93(74.40)
Yale 56 54.22(58.55) 60.64(61.02) 61.45(61.12) 75 5(@) 80.33(81.21)
Pitt 56 64.12(62.12) 66‘15(62 65) 65.87(66.11) 70 7(@) 73.47(73.77)
Leuven 63 61.21(62.25) 65.72(69.10) 63.83(64.30) 72.11(70.25) 79.15(78.21)
Avg - 61.29(61.69) 64.73(65.65) 64.41(64.62) 72.31(70.49) 78.16(77.93)

training and test subsets. The results in Table[I] clearly indicate that our method
exhibits superior performance across all sites compared to other methods. Specif-
ically, compared with LRCDR, our model achieves an average increase of 8.09%
(ACQC) and 10.55% (AUC) on Avg. Furthermore, the model achieves favorable
results on different small sites not limited to the four major sites, demonstrating
its capability of generalization.

Prompt Interpretation: We investigate the interpretability of ASD through
the mask prompt in our model. Specifically, we extracted the weights of the func-
tional connectivity (FCs) obtained from the mask prompts of all the sites and
identified the common top 30 FCs across all the sites (shown in Fig. []). From
Fig. b), we observe that the critical FCs are primarily distributed across the
frontal, temporal, and cerebellar regions, consistent with the findings of previous
studies [20/T3]. In addition, 10 of the top 30 discriminative FCs are associated
with the temporal regions, which emerge as a key area for ASD diagnosis. These
findings are consistent with the current interpretation of the pathological path-
ways of ASD [25/18].

4 Conclusion

We propose a novel prompt-tuning framework for multi-site brain network analy-
sis and improve ASD diagnostic performance. Our framework effectively captures
the topological structure of brain networks and mitigates inter-individual het-
erogeneity by leveraging the mask prompt and sample prompts. Additionally, we
distill the mask prompt to reduce domain-specific biases and enhance efficient
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(b) Top 30 discriminative FCs
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Fig. 4. Exploring the interpretability of mask prompts. Fig. a): Visualization of mask
prompts of different sites. Fig. b): Top 30 discriminative FCs identified by Brain-
Prompt.

cross-domain knowledge transfer. Experimental results on the ABIDE dataset
show that the classification performance of the proposed method outperforms
the state-of-the-art methods for ASD diagnosis, especially at sites with limited
samples. Furthermore, our framework holds promise for applications in other
multi-site databases.
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