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Abstract. Color fundus photography (CFP) is widely used in clinical
practice for its convenience and accessibility. However, it faces challenges
such as low image quality, limited depth information, susceptibility to
artifacts and low contrast, which reduce diagnostic accuracy and hin-
der the detection of small lesions. Fluorescein angiography (FA), on the
other hand, effectively highlights features such as vascular leakage and
non-perfusion. However, it also has drawbacks, including health risks and
the lack of color information. To address these challenges, we propose a
multi-stage retinal image fusion framework, RIFNet, to improve image
quality and diagnostic efficacy by integrating multimodal information
from CFP and FA. First, to address the problem of missing modalities
due to the difficulty of accessing FA as an intrusive inspection, we de-
sign a bi-stream generative subnetwork to generate pseudo FA images by
pre-training with real CFP images as the generating condition, which ef-
fectively supplements the modality information. Subsequently, the color
representations of different modalities are unified by color coding, and
fed into the multimodal discriminative fusion network to generate the
fused color-coded images. Finally, a multiscale reconstruction method
is used to generate a high-resolution and high-contrast enhanced image.
Experiments demonstrate that this multimodal fusion framework supple-
ments FA information, reduces medical costs, and reveals lesion details
unobservable with a single modality, supporting accurate ocular disease
diagnosis.

† Yuqing Li and Qingshan Hou contribute equally to this work.
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1 Introduction

Ocular diseases are a serious threat to the visual function of patients, for exam-
ple, diabetic retinopathy (DR) and age-related macular degeneration can cause
irreversible vision loss if left untreated. Fundus images play a key role in the
prevention, diagnosis and treatment of ocular diseases [8]. In clinical practice,
various imaging modalities have been developed to capture detailed information
about the retina. Color fundus photography (CFP) is a simple and safe imaging
technique widely used for fundus examination. It provides high-resolution color
images of retinal structures. However, CFP often suffers from low contrast and
artifacts, which may obscure subtle pathological changes critical for accurate di-
agnosis [9]. Fluorescein angiography (FA) is the standard imaging technique for
evaluating the retinal vasculature. By injecting sodium fluorescein, FA produces
high-contrast images that show microaneurysms, neovascularization, and vascu-
lar leakage. Despite its diagnostic value, FA is invasive and carries risks such as
nausea, vomiting, and in rare cases, serious complications such as cardiac arrest
[2], which makes FA data difficult to obtain and scarce.

Multimodal medical image fusion (MMIF) combines medical images from dif-
ferent modalities to create composite images, enhancing diagnostic accuracy by
integrating complementary information. For fundus imaging, MMIF allows struc-
tural information from CFP to be combined with functional information from
FA, enabling more comprehensive lesion analysis. While MMIF has been ex-
tensively explored in CT (computerized tomography)-MRI (magnetic resonance
imaging) [10,3], and PET (positron emission tomography)-MRI [13,5], SPECT
(single-photon emission computed tomography)-MRI [15,19], several challenges
and shortcomings arise due to the unique characteristics of CFP and FA imag-
ing modalities: 1) Limited FA data availability: Publicly available FA images
are scarce due to the invasive nature of the examination, while CFP images are
abundant but lack the functional insights provided by FA, leading to a modal
imbalance. 2) Modal differences: CFP and FA images exhibit significant dis-
parities in resolution, contrast, and noise, complicating the fusion process. 3)
Preservation of fine details: Fusion strategies must ensure structure and
pathology details (e.g. retinal vessels, macula, hemorrhage) are retained and
enhanced while balancing global and local information for effective clinical in-
terpretation.

To address the above challenges, we propose a multimodal retinal image fu-
sion framework for ocular diseases, called RIFNet. Specifically, first, to compen-
sate for the missing FA modality data and obtain complementary information
for CFP, a pre-trained bi-stream generative subnetwork is proposed to gener-
ate pseudo FA images. At the same time, we design to use viridis colormap
to encode multi-modal images and unify image representation. Secondly, gen-
erative adversarial network (GAN) is designed as a multimodal discriminator
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structure to capture multimodal information globally and locally. Finally, the
output of the fusion network serves as a weight matrix to achieve the recon-
struction of high-quality color CFP images, thereby effectively enhancing the
performance of downstream tasks and providing support for further clinical
applications. The contributions of RIFNet can be summarized as: 1) We pro-
pose a multimodal image fusion method that integrates CFP and FA imaging
modalities. 2) By employing the viridis colormap for color encoding, our ap-
proach enhances pixel-level details while significantly improving the efficiency
and effectiveness of the fusion process. 3) A pre-trained bi-stream generative
subnetwork is introduced to synthesize pseudo-FA images, supplementing the
functional information for CFP images. 4) Our strategy demonstrates signifi-
cant performance improvements across multiple evaluation metrics, confirming
its ability to precisely integrate information from different modalities and en-
hance the model’s capacity to identify and analyze fundus diseases. The code is
available at https://github.com/Liyuyu666/RIFNet.

2 Methodology

As shown in Figure 1, we propose RIFNet, a multimodal fusion framework that
integrates complementary multimodal information and generates high-quality
fused images. This fusion enhances both lesion visibility and structural details,
improving ocular disease diagnosis.

2.1 Pre-trained Bi-stream Generative Subnetwork

In real clinical scenarios, obtaining paired multi-modal fundus images is often
challenging. To tackle the issue of missing modalities during the multi-modal fu-
sion process, we introduced a pre-trained bi-stream generative subnetwork [21].
It comprises two key branches: the high-resolution branch focuses on enhanc-
ing local details in the modality generation, while the low-resolution branch is
responsible for regulating global information in modality generation. This pre-
training process primarily involves two key aspects:
1) Multi-modal fundus image registration provides essential paired data for the
supervised training of the generative network. We extract vascular structures [12]
from both CFP and FA images to serve as matching feature points. Using these
vascular maps, we perform keypoint detection [1] to facilitate feature match-
ing [17] between the multi-modal fundus images. Finally, the RANSAC algo-
rithm [4] is applied to estimate the homography matrix, followed by a transfor-
mation process, resulting in accurately aligned CFP and FA image pairs.
2) Color fundus images are transformed to generate complementary modalities.
Based on registered multi-modal fundus images, we train a bi-stream generative
subnetwork through supervised learning to achieve pixel-level modality conver-
sion. This process provides high-quality paired (e.g., CFP & pseudo-FA) training
data for the subsequent multi-modal fusion subnetwork.

https://github.com/Liyuyu666/RIFNet
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Fig. 1: Illustration of the RIFNet framework. Stage 1: A bi-stream generative
subnetwork processes CFP images XC : one branch captures global features at
low resolution, while the other enhances local details (vessels and lesions) at
high resolution. Stage 2: Real XC and synthetic XF are color-coded via viridis
colormap to X ′

C and X ′
F , then fused through a discriminative fusion network

to maintain image quality and structure. Stage 3: The fusion network output
X ′

CF serves as pixel weights to enhance regions of interest in XC through both
gray-scale and RGB-scale processing, producing the fused image XFC .

2.2 Multimodal Discriminative Fusion Network

CFP and FA Images Encoding CFP and FA exhibit distinct differences in
image representation. Specifically, CFP is an RGB image that depicts the struc-
tural and color information of the retina, while FA is a high-contrast grayscale
image rich in vascular details. These differences provide complementary informa-
tion but also pose significant challenges to the design of the fusion network. To
effectively integrate the complementary information from CFP and FA images,
we encode them into a unified color space. To unify feature representation and
emphasize the lesion area, the viridis colormap scheme is employed, wherein a
mapping function C is defined to linearly transform unstructured data into a
uniform structured representation. The viridis scheme, renowned for its supe-
rior luminance and tonal contrast, effectively accentuates subtle image varia-
tions and reveals potential lesions. The encoding process is outlined as follows:
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X ′
C = C1(f1(XC));X

′
F = C2(f2(XF )), where C1 and C2 represent the mapping

functions for CFP and FA, and f1 and f2 are the normalization functions.

Fusion Network Architecture The proposed fusion network architecture
comprises a generator G and dual discriminators DC and DF . The generator
consists of an encoder network and a decoder network. The color-coded im-
ages are segmented into corresponding patches X ′

C = {P 1
C , P

2
C , ..., P

N2

C } and
X ′

F = {P 1
F , P

2
F , ..., P

N2

F }, with their channels concatenated Concat(X ′
C , X

′
F ).

The decoder is responsible for upsampling the encoded low-dimensional features
and transforming them into a high-resolution image. Throughout this process,
the information from X ′

C and X ′
F images is integrated into the generated image

X ′
CF . To obtain fused images with complementary information, we employ the

Frobenius norm loss LG
C to enforce global constraints between the generated im-

age X ′
CF and the CFP images X ′

C , and applying perceptual loss LG
F to enforce

local constraints on the detailed features between the generated image X ′
CF and

the FA images X ′
F . The losses LG

C and LG
F are defined as follows:

LG
C = ∥G(X ′

C , X
′
F )−X ′

C∥2F ; LG
F = ∥V (G(X ′

C , X
′
F ))− V (X ′

F )∥2 (1)

where ∥·∥2F indicate Frobenius norm. V (·) is the pre-trained VGG network used
to extract the high level features of the image. ∥·∥2 denotes the L2 norm, which
measures the Euclidean distance between the feature representations of the gen-
erated image G(X ′

C , X
′
F ) and the FA image X ′

F in the feature space extracted
by the pre-trained VGG network. Additionally, the generator total loss also in-
corporates adversarial losses, denoted as (2), to enhance the perceptual quality
of generated images and improve the generation robustness.

LG_adv = E[log(1−DC(G(X ′
C , X

′
F ))] + E[log(1−DF (G(X ′

C , X
′
F )))] (2)

Both discriminators (DC and DF ) share an identical network architecture.
The color-coded images X ′

C/X
′
F and the generated images X ′

CF are input into
the discriminators. The training process incorporates adversarial loss for dis-
criminator optimization, complemented by label smoothing techniques, to re-
duce overfitting of the discriminators and enhance the training stability of the
generator. The discriminator losses LD

C and LD
F are specified as follows:

LD
C = E[−log(DC(X

′
C))] + E[−log(1−DC(G(X ′

C , X
′
F )))] (3)

LD
F = E[−log(DF (X

′
F ))] + E[−log(1−DF (G(X ′

C , X
′
F )))] (4)

Through iterative adversarial training between the generator and dual dis-
criminators, salient features from both color-encoded images are systematically
integrated to generate the final fused representation X ′

CF .

2.3 Color Fundus Image Reconstruction

The purpose of fusing CFP and FA is to fully integrate multimodal informa-
tion and maximize its utilization. CFP is more general in tasks such as dis-
ease diagnosis, vessel segmentation, and lesion segmentation, whereas FA has
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a relatively limited range of applications. Therefore, the reconstruction of CFP
image is designed as the final goal of fusion, and the complementary informa-
tion provided by FA image is used to enhance CFP, thereby improving image
quality and diagnostic performance. First, the fused image X ′

CF is converted
to a grayscale image X ′

GF and used as a weight matrix to enhance the impor-
tant structures in the original CFP image XC at the pixel level. Specifically,
the fusion process can be divided into two stages: 1) the reconstructed XGF is
obtained from X ′

GF and the grayscale CFP image XGC , which can be expressed
as: XGF = XGC × (1 +α× X′

GF

max(X′
GF ) ), where α is a scalar parameter to control

the degree of enhancement, max(·) indicates to find the maximum of all pixel
values in the X ′

GF . 2) the three channels of XC are represented as R, G and B,
enhancement using XGF for each channel to obtain new channel values R′, G′

and B′, which are then recombined into a fused color fundus image XFC .

3 Experiments

3.1 Datasets and Implementation Details

We evaluate RIFNet on two benchmark datasets: (1) The Isfahan MISP dataset
[6], comprising 60 paired CFP and FA images (30 healthy and 30 DR cases);
(2) The DRIVE dataset [18], including 40 CFP images with pixel-wise vascular
annotations. RIFNet is developed in PyTorch and executes on a single NVIDIA
A100 GPU for both training and testing. The preprocessing of the Isfahan MISP
dataset involves three steps: cropping redundant black backgrounds from im-
ages, standardizing the fundus region, and performing coarse global registra-
tion. We reorganize the dataset into 54 CFP-FA image pairs for training the
bi-stream and multimodal discriminative networks, reserving 6 pairs for test-
ing. The bi-stream network receives 1024×1024 resized inputs across 600 epochs
(batch size=4, learning rate=0.0002). Subsequently, training images are coded
using viridis colormap, resized to 588×588, and divided into 21×21 patches,
expanding the training set to 42,336 CFP-FA patch pairs and fed into the mul-
timodal discriminative fusion network, the network is trained with a learning
rate of 0.0001, a decay rate of 0.95, and a batch size of 48 for 10 epochs. Fur-
thermore, several no-reference metrics (entropy (EN), standard deviation (SD)
and full-reference metrics (mutual information (MI), structural similarity index
(SSIM), visual information fidelity (VIF) [7], quality assessment of blended fea-
tures (QAB/F ) [23], learned perceptual image patch similarity(LPIPS) [26] and
mutual gradient (MG) [16]) are employed for evaluation of fused results.

3.2 Comparisons With State-of-the-Art Methods

To validate the effectiveness of RIFNet, we conduct quantitative comparisons
with other comparable MMIF methods, including DDcGAN [14], DenseFuse
[11], MATR [20], PMGI [25], SDNet [24], CDDFuse [27], and EMFusion [22]. As
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quantitatively demonstrated in Table 1 (columns 2-7), RIFNet achieves state-
of-the-art performance in critical evaluation dimensions. In terms of information
preservation, RIFNet establishes new benchmarks with MI = 3.06 (0.36 higher
than MART’s 2.7) and SD = 78.82 (surpassing EMFusion by 3.42), demonstrat-
ing superior capability in retaining both statistical information and intensity
variations from multi-model images (CFA & FA). In image quality assessment,
RIFNet shows significant quality enhancement evidenced by VIF = 1.51 (53%
improvement over MATR’s 0.98). These quantitative gains visually translate to
enhanced detail perception and improved structural fidelity. It should be noted
that EN, QAB/F and SSIM have relatively low values, which can be attributed
to our fusion strategy that prioritizes diagnostic relevance and structural clarity
rather than maximizing these metrics, this can be further elucidated by analyz-
ing the fused images in comparison with individual source images. As shown in
columns 8 to 13 of the Table 1, RIFNet significantly outperforms other methods
in the metrics of MI, SSIM, VIF, QAB/F , LPIPS and MG, suggesting that the
fused images outperform in terms of perceptual similarity, gradient information
retention, and visual informativeness. RIFNet emphasizes clinically significant
features in CFP while reducing redundant information in FA.

Table 1: The performance comparison between comparable methods and
RIFNet is quantitatively evaluated through multiple metrics. Full-reference met-
rics are computed using two configurations: (1) multi-modal inputs (CFP and
FA) for Columns 2-7, and (2) CFP-only inputs for Columns 8-13.

Methods
Multi-model CFP

EN ↑ SD ↑ MI ↑ SSIM ↑VIF ↑QAB/F ↑ MI ↑ SSIM ↑VIF ↑QAB/F ↑ LPIPS ↓MG ↑
SDNet [24] 6.73 74.97 2.61 1.18 0.75 0.49 1.57 0.47 0.26 0.22 0.31 0.72
PMGI [25] 6.79 61.75 2.68 1.21 0.81 0.61 1.52 0.53 0.15 0.25 0.3 0.57
DenseFuse [11] 5.8 54.21 2.56 1.43 0.56 0.25 1.76 0.82 0.29 0.33 0.21 0.87
MATR [20] 6.7 63.75 2.7 1.12 0.98 0.67 1.3 0.44 0.13 0.25 0.35 0.56
EMFusion [22] 6.56 75.4 2.66 1.5 0.89 0.63 1.43 0.64 0.19 0.26 0.32 0.67
CDDFuse [27] 6.63 69.44 2.4 1.42 0.93 0.53 1.26 0.62 0.23 0.26 0.31 0.58
DDcGAN [14] 6.62 62.34 2.16 1.28 0.48 0.38 1.5 0.58 0.16 0.18 0.32 0.44
RIFNet(Ours) 6.5 78.82 3.06 1.33 1.51 0.29 2.43 0.86 1.44 0.45 0.15 0.91

3.3 Ablation Study

To evaluate the effectiveness of multimodal fusion networks, this section ex-
plores two key components: adversarial loss LG_adv and content loss. Specifi-
cally, the content loss consists of Frobenius norm loss LG

C and perceptual loss
LG
F . We systematically analyze the effects of various loss combinations on the

integration of cross-modal image information. Specifically, the ablation study
includes: 1) Using adversarial loss only: LG = LG_adv; 2) Using content loss
only: LG = λ(LG

C + LG
F ); and 3) Using both adversarial and content losses:

LG = LG_adv + λ(LG
C + LG

F ). As shown in Figure 2, we qualitatively demon-
strate the impact of these different loss function combinations on image fusion
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results. When using only LG_adv in Figure 2 (b), the fusion results exhibit sig-
nificant degradation in image quality. The retinal vasculature appears blurry
and poorly defined, with undesired artifacts that obscure important anatomical
details. With content loss alone (LG

C & LG
F ), as demonstrated in Figure 2 (c), the

fusion results show indiscriminate enhancement across the entire image. While
the overall visibility is improved compared to using only adversarial loss, RIFNet
fails to selectively emphasize clinically relevant features. The vessels and retinal
structures are enhanced with similar intensity as the background, resulting in
suboptimal feature distinction. In contrast, the optimal combination of both
adversarial and content losses in Figure 2 (d) achieves superior fusion quality.
This loss combination enhances the vasculature and lesions from the original
CFP while suppressing background noise. The background demonstrates im-
proved uniformity without artifacts, resulting in images that are both visually
appealing and clinically informative. Besides, the quantitative results (Table 2)
show that when combining all loss functions (LG_adv, LG

C , and LG
F ), our method

achieves the best performance across all comparable metrics, including EN=6.5,
SD=78.82, VIF=1.51, and MG=1.28, with significant improvements compared
to using single loss functions alone.

Fig. 2: Qualitative results of multi-
modal fusion network ablation.

Losses EN ↑ SD ↑ VIF ↑ MG ↑
LG_adv LG

C LG
F

✓ × × 6.23 53.5 1.01 1.21
× ✓ ✓ 6.28 62.2 1.15 1.16
✓ ✓ ✓ 6.5 78.82 1.51 1.28

Table 2: Quantitative results of
multimodal fusion network ablation.

3.4 Performance Evaluation of Vessel Segmentation Task

We evaluate RIFNet’s effectiveness via a vascular segmentation task. Based on
the DRIVE dataset, we conduct comparative experiments across the results of
multiple fusion frameworks for both U-Net training and testing. As illustrated
in Figure 3, the qualitative results demonstrate the superior performance of
RIFNet. The RIFNet-generated results exhibit several advantages over existing
methods: 1) The segmentation results reveal more precise delineation of vessels,
particularly evident in the enlarged views (red and yellow boxes). 2) Our method
preserves the continuity of vascular structures better than comparative methods,
avoiding the fragmentation issues in MATR and DenseFuse. 3) The Grad-CAM
visualizations indicate that our method focuses more accurately on the vascu-
lar network, with heatmap highlighting the clinically relevant vessel structures.
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These improvements lead to better segmentation accuracy, showing RIFNet’s
ability to generate more clinically valuable fusion results.

Fig. 3: The segmentation results and Grad-CAM results (2nd row) on fused
images obtained by different methods.

4 Conclusion

In this study, we propose a multi-stage retinal image fusion framework, RIFNet,
to address the limitations of single-modal fundus imaging by integrating com-
plementary features from CFP and FA. The proposed framework employs a bi-
stream generative subnetwork to synthesize pseudo-FA images, effectively com-
pensating for scarce FA data caused by its invasive nature. By unifying multi-
modal color representations with the viridis colormap, we mitigate perceptual
bias and enhance pixel-level pathological details. A GAN-based fusion network
further optimizes global and local feature integration, while a multi-scale recon-
struction strategy ensures high-resolution, high-contrast outputs. Experimental
results demonstrate that RIFNet significantly improves image quality and the
performance of downstream vascular segmentation tasks.
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