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Abstract. Data augmentation methods inspired by CutMix have demon-
strated significant potential in recent semi-supervised medical image seg-
mentation tasks. However, these approaches often apply CutMix oper-
ations in a rigid and inflexible manner, while paying insufficient atten-
tion to feature-level consistency constraints. In this paper, we propose
a novel method called Mutual Mask Mix with High-Low level feature
consistency (M3HL) to address the aforementioned challenges, which
consists of two key components: 1) M3: An enhanced data augmentation
operation inspired by the masking strategy from Masked Image Model-
ing (MIM), which advances conventional CutMix through dynamically
adjustable masks to generate spatially complementary image pairs for
collaborative training, thereby enabling effective information fusion be-
tween labeled and unlabeled images. 2) HL: A hierarchical consistency
regularization framework that enforces high-level and low-level feature
consistency between unlabeled and mixed images, enabling the model
to better capture discriminative feature representations. Our method
achieves state-of-the-art performance on widely adopted medical image
segmentation benchmarks including the ACDC and LA datasets. Source
code is available at https://github.com/PHPJava666/M3HL.

Keywords: Semi-supervise learning · Medical image segmentation · Mu-
tual mask mix · Feature consistency constraints.

1 Introduction

Semi-supervised medical image segmentation (SSMIS) aims to achieve perfor-
mance comparable to fully supervised methods while utilizing only limited anno-
tated data, effectively alleviating the challenges of scarce labeled data and labor-
⋆ Corresponding author
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intensive annotation processes in medical imaging, which holds significant impli-
cations for computer-aided diagnosis and clinical applications. Currently, one ef-
fective category of SSMIS methods is based on consistency regularization[8,15,16,19].
These methods enforce consistency constraints to ensure performance stability
across different input views, which are typically generated through diverse data
augmentation strategies[1,5] or different network initialization approaches[7,11].

Among data augmentation based SSMIS methods, BCP[1] breaks the paradigm
of training labeled and unlabeled data separately, inspired by CutMix[20] in
semi-supervised learning, by generating new training samples through bidirec-
tional copy-pasting of co-located image patches. PSC[5] extends BCP’s approach
by splitting paired labeled/unlabeled images into equal-sized patches and ran-
domly shuffling them to create mixed samples. OMF[9] crops foreground and
background regions along segmentation edges using label guidance and swaps
them across images to synthesize hybrid samples. ABD[4] enhances segmenta-
tion in low-confidence regions via confidence-guided bidirectional replacement of
image patches between strongly and weakly augmented inputs. These methods,
by locally mixing or perturbing labeled and unlabeled data, break the conven-
tional paradigm of independent training, promoting cross-distribution informa-
tion interaction. However, these methods rely on rigid and inflexible data mixing
strategies (e.g., fixed patch sizes, predefined replacement rules), limiting their
adaptability to complex anatomical variations. Moreover, they do not incorpo-
rate feature-level consistency constraints, which can hinder the effective capture
of high-level semantic information, potentially causing error propagation due
to local noise, and ultimately restricting the model’s ability to capture subtle
pathological features.

In this work, inspired by the Masked Image Modeling (MIM)[6] paradigm in
visual representation learning, we propose a dynamic mutual mask mix strategy
to refine existing data augmentation frameworks, incorporating high-low level
consistency constraints that enable simultaneous attention to global contextual
patterns and localized structural details, thereby improving semantic alignment
and feature robustness. Specifically, we first devise a random mask generator
that parametrically controls mask patch sizes and mask ratios, enabling dy-
namic and random mutual mask mixing between labeled and unlabeled data.
This dynamic mixing mechanism systematically explores the impact of diverse
spatial-contextual combinations on feature learning, compelling the model to
develop a more comprehensive understanding of anatomical structures through
alternating occlusion and recombination strategies. Furthermore, we introduce
high-low level feature consistency constraints: at the low-level feature space, we
enforce geometric consistency of local edge features by constructing multi-view
L1 norm constraints between the mixed samples and the unlabeled samples; at
the high-level feature space, we design a symmetric cosine similarity metric, con-
straining the directional consistency of mixed and unlabeled samples’ features in
the semantic space from multiple dimensions. This design effectively filters out
outlier noise in pseudo-labels through hierarchical feature calibration, enhancing
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the model’s feature discriminability in complex scenarios, such as occlusion and
boundary blurring.

In summary, the main contributions of this work are as follows: (1) We
introduce a novel dynamic mutual mask mixing (M3) strategy, that enhances
semi-supervised medical image segmentation through a random mask generator
with adjustable mask patch sizes and ratios, addressing the limitations of rigid
data mixing in existing methods. (2) We propose a hierarchical high-low level
feature consistency framework (HL), significantly improving the model’s abil-
ity to capture both global contextual patterns and localized structural details
while mitigating pseudo-label noise. (3) We achieve state-of-the-art performance
on the ACDC[2] and LA[18] datasets, demonstrating the efficacy of our M3HL
method in handling scarce labeled data and complex anatomical variations.

2 Method

2.1 Problem Setting and Overall Architecture

In our semi-supervised segmentation task, we use a labeled dataset Dl with N
labeled samples and an unlabeled dataset Du with M unlabeled samples, where
Xl and Yl represent the labeled image and its corresponding labels, respectively.
Notably, the number of unlabeled samples M significantly exceeds the number
of labeled samples N .
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Fig. 1: Overview of our mutual mask mix with high-low level feature consistency
method.

The architecture follows a teacher-student paradigm, as shown in Fig. 1. Each
batch of labeled images is divided into two parts, Xa

l and Xb
l , and unlabeled

images are similarly split into Xa
u and Xb

u. After passing Xa
l and Xa

u through
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our mutual mask mix module, we obtain mixed images Xa
lumix, and similarly

for Xb
l and Xb

u to get Xb
lumix. These mixed images are input into the student

network, while the unlabeled images go into the teacher network. The teacher
network’s parameters are updated using an exponential moving average (EMA)
of the student network.

The student network generates predictions P a
lumix and P b

lumix for the mixed
images, while the teacher network generates pseudo-labels P̃ a

u and P̃ b
u for the

unlabeled images. These pseudo-labels are mixed with labeled data to generate
the mixed outputs Y a

lumix and Y b
lumix, which are used in the mutual mask mix

loss function Lmix(P
a
lumix, P

b
lumix, Y

a
lumix, Y

b
lumix).

The teacher network extracts high-level and low-level features from Xa
u and

Xb
u, denoted as Fa

uhi, F
a
ulo, F

b
uhi, and Fb

ulo, respectively. Similarly, the student
network extracts high-level and low-level features from Xa

lumix and Xb
lumix, de-

noted as Fa
uhi, F

a
ulo , Fb

uhi, and Fb
ulo, respectively. The high-level and low-level

feature consistency losses are defined as Lhigh(F
a
uhi,F

b
uhi,F

a
mixhi,F

b
mixhi) and

Llow(F
a
ulo,F

b
ulo,F

a
mixlo,F

b
mixlo), respectively, the high-low level feature consis-

tency loss is the sum of both, expressed as LHL = Lhigh + Llow.
The overall loss function for the training process is composed of the mask

mix loss and the weighted high-low level feature consistency loss, expressed as:

L = Lmix + λLHL (1)

where the hyperparameter λ controls the strength of the high-low level feature
consistency constraint. The following section will describe loss functions Lmix and
LHL in detail. It is worth noting that our method does not require a separate
supervised loss Lsup(Xl, Yl) based on labeled data to train the student network,
nor does it require pretraining. We argue that pretraining on very few labeled
samples may cause the model to exhibit confirmation bias, which will be verified
in our results section.

2.2 Mutual Mask Mix
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Fig. 2: Illustration of our mutual mask mix operation.
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We illustrate the detailed process of the mutual mask mixing operation using
the example of generating Xa

lumix from Xa
u and Xa

l . As shown in Fig. 2, we first
generate a mask of the same size as Xa

u , for instance, 256× 256. The size of the
mask patch and the mask ratio are adjustable. In this case, we set the mask
patch size to 64 × 64 and the mask ratio to 50%. Random mask patches are
generated within the mask, denoted as M. By multiplying Xa

u with M, we
obtain the masked image Xa

uM. Next, we apply the inverse mask (1 −M) and
multiply it with Xa

l , producing the masked image Xa
lM. Finally, by adding Xa

uM
and Xa

lM, we obtain the mutually mask-mixed image Xa
lumix. This process can

be mathematically expressed as:

Xa
lumix = Xa

uM +Xa
lM = Xa

u ⊙M+Xa
l ⊙ (1−M) (2)

We adopt a similar procedure to obtain Xb
lumix, Y

a
lumix and Y b

lumix, construct
the mutual mask mix loss as follows:

Lmix =
∑

s∈{a,b}

(
Lce(P

s
lumix, Y

s
lumix)+Ldice(P

s
lumix, Y

s
lumix)

)
⊙
(
M+α(1−M)

)
(3)

The design of Lmix, integrating cross-entropy loss Lce and Dice loss Ldice, and
leveraging the dynamic mask M and its weighted complement (1 − M) (con-
trolled by the parameter α), optimizes the student model’s performance on mixed
samples. This loss function enhances collaborative training between labeled and
unlabeled data, strengthens the model’s robustness against occlusions, noise, and
incomplete data, and improves SSMIS performance through dynamic spatial-
contextual exploration, particularly for handling complex anatomical structures
and scarce labeled data.

2.3 High-Low Level Feature Consistency

The low-level features of the mixed samples, Fa
mixlo and Fb

mixlo, obtained after the
first downsampling layer in the segmentation network encoder, are constrained
by quadruple L1-distance losses with the unlabeled sample’s low-level features,
Fa

ulo and Fb
ulo, as shown in Eq.(4). Similarly, the high-level features of the mixed

samples, Fa
mixhi and Fb

mixhi, extracted after the bottleneck layer of the segmen-
tation network, are constrained with the unlabeled samples’ high-level features,
Fa

uhi and Fb
uhithrough cosine similarity computation between each pair, as shown

in Eq.(5).

Llow =
1

4

∑
s∈{a,b}

∑
t∈{a,b}

∥Fs
mixlo − Ft

ulo∥1 (4)

Lhigh =
1

4

∑
s∈{a,b}

∑
t∈{a,b}

[
1− cos

(
Fs

mixhi,F
t
uhi

)]
(5)

The high-low level feature consistency loss LHL is designed to enforce align-
ment between the mixed and unlabeled samples at both low and high feature



6 Y. Liu et al.

levels. Specifically, Llow minimizes the L1-distance across all pairs of low-level
features, ensuring geometric consistency of local edge details. Conversely, Lhigh
computes the cosine similarity between high-level features to enforce semantic
alignment and directional consistency in the semantic space, averaged over all
pairs to enhance robustness. Together, LHL mitigate noise and improve feature
discriminability, particularly in handling complex anatomical structures and in-
complete data.

3 Experiments and Results

3.1 Datasets

ACDC dataset - The ACDC dataset is a multi-class segmentation dataset that
includes the myocardium, left and right ventricles. It consists of 100 cardiac MR
imaging samples from 100 patients. We follow the data split in [12], dividing the
dataset into training, validation, and test sets with a 70/10/20 ratio.
LA dataset - The LA dataset is a binary segmentation dataset consisting of
100 gadolinium-enhanced MR scans. For consistency, we adopt the data split
strategy from [11], using 80 samples for training and 20 for validation.

3.2 Implementation Details and Evaluation Metrics

In our experiments, we set the parameters λ and α to 0.5. We used an NVIDIA
Quadro RTX 6000 GPU (24GB) with a fixed random seed. The SGD optimizer
was used with a learning rate of 10−3 and a weight decay of 10−4. For the
LA dataset, we employed a 3D V-Net[13] as the backbone network, with input
patches randomly cropped to 112×112×80, a mask patch size of 28×28×20, a
mask ratio of 50%, a batch size of 8, and a total of 15K training iterations. For
the ACDC dataset, we used a 2D U-Net[14] for segmentation, with input patch
sizes of 256×256, a mask patch size of 64×64, a mask ratio of 50%, a batch size
of 24, and a total of 30K training iterations. The evaluation metrics included
Dice score, Jaccard score, average surface distance (ASD), and 95% Hausdorff
distance (95HD).

3.3 Comparison with State-of-the-Art Methods

Table 1 presents a comprehensive comparison of our proposed M3HL method
with eight state-of-the-art semi-supervised approaches on the ACDC (10% la-
beled) and LA (10% labeled) datasets. Our method consistently achieves the
highest performance across all metrics. Specifically, on the ACDC dataset, M3HL
outperforms the latest ABD method by 0.66% in Dice score, 1.28% in Jaccard,
and reduces 95HD and ASD to 1.43 and 0.34, respectively. On the LA dataset,
it surpasses the top-performing OMF and AD-MT methods, achieving a Dice
score of 91.01% (0.78% and 0.46% improvements over OMF and AD-MT, re-
spectively) and an ASD of 1.59. Notably, our method demonstrates robust per-
formance across both datasets without requiring pretraining, unlike BCP and
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OMF, as this eliminates potential confirmation bias from limited labeled data.
The qualitative segmentation results in Fig. 3 show that our method effectively
suppresses regions of missegmentation observed in other approaches, producing
segmentations closer to the ground-truth.

Table 1: Segmentation performance comparison on ACDC (10% labeled) and
LA (10% labeled) datasets. * indicates that the method needs pretraining. –
indicates unreported results in original papers.

Method ACDC (10%/7 labeled) LA (10%/8 labeled)
Dice↑ Jaccard↑ 95HD↓ ASD↓ Dice↑ Jaccard↑ 95HD↓ ASD↓

U-Net/VNet (SupOnly) 79.41 68.11 9.35 2.70 82.74 71.72 13.35 3.26
UA-MT [19] (MICCAI’19) 81.65 70.64 6.88 2.02 86.28 76.11 18.71 4.63
SASSNet [8] (MICCAI’20) 84.50 74.34 5.42 1.86 85.22 75.09 11.18 2.89

CPS [3] (CVPR’21) 86.91 78.11 5.72 1.92 – – – –
DTC [11] (AAAI’21) – – – – 87.51 78.17 8.23 2.36

SS-Net [17] (MICCAI’22) 86.78 77.67 6.07 1.40 88.55 79.62 7.49 1.90
PS-MT [10] (CVPR’22) 88.91 80.79 4.96 1.83 89.72 81.48 6.94 1.92
BCP* [1] (CVPR’23) 88.84 80.62 3.98 1.17 89.62 81.31 6.81 1.76

OMF* [9](MICCAI’24) – – – – 90.23 82.34 5.95 1.63
AD-MT [21] (ECCV’24) 89.46 81.47 1.51 0.44 90.55 82.79 5.81 1.70

ABD [4](CVPR’24) 89.81 81.95 1.46 0.49 – – – –
M3HL (Ours) 90.47 83.23 1.43 0.34 91.01 83.43 5.72 1.59

SASSNet SS-Net BCP AD-MT ABD M3HL (Ours) Ground-truth

Fig. 3: Visualization of segmentation results on ACDC dataset with 10% labeled
data.

3.4 Ablation Studies

Effectiveness of the Proposed Losses Lmix and LHL: As shown in Table 2,
we systematically validate the effectiveness of the proposed losses Lmix and LHL
by incrementally integrating them with/without the supervised loss Lsup on the
LA dataset (10% labeled data). The results reveal that either individual or com-
bined use of Lmix and LHL without Lsup consistently outperforms the baselines
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with supervised training. Specifically, introducing Lmix alone achieves significant
performance gains (7.02% and 7.31% Dice score gains over VNet with/without
Lsup, respectively), highlighting the efficacy of our mutual mask mix strategy in
fusing semantic information from labeled and unlabeled data through collabora-
tive training. Furthermore, incorporating LHL on top of Lmix yields additional
improvements, verifying that hierarchical feature utilization enables the model
to capture both global contextual and local detailed information for enhanced
segmentation.

Table 2: Effectiveness of the proposed losses Lmix and LHL.

Method Lsup Lmix LHL
Metrics

Dice↑ Jaccard↑ ASD↓ 95HD↓
VNet ✓ 82.74 71.72 13.35 1.51

VNet + M3 ✓ ✓ 89.76 81.51 6.95 1.93
VNet + HL ✓ ✓ 88.69 80.20 7.16 2.03

VNet + HL + M3 ✓ ✓ ✓ 90.32 82.48 7.06 1.68
VNet + M3 ✓ 90.05 82.39 7.10 1.82
VNet + HL ✓ 89.40 81.43 7.28 2.02

M3HL (Ours) ✓ ✓ 91.01 83.43 5.72 1.59

Selection of Mask Patch Size and Mask Ratio: Fig. 4(a) and Fig. 4(b)
present the heatmaps of Dice scores and ASD values under varying mask patch
sizes and mask ratios on the ACDC dataset (10% labeled data). The optimal
performance is achieved with a patch size of 64 and a mask ratio of 50%. This
configuration equally masks identical regions in labeled and unlabeled data be-
fore mixing, allowing the model to balance feature learning from both data types
and achieve optimal representation learning.
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Fig. 4: Heatmaps of Dice scores and ASD values under varying mask patch sizes
and mask ratios.
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4 Conclusion

In this paper, we propose a semi-supervised medical image segmentation method
based on mutual mask mix strategy and high-low level feature consistency con-
straints. The core idea is to enhance data by randomly masking and mutually
mixing labeled and unlabeled data, generating mixed data that integrates se-
mantic information from both sources for training. Additionally, by enforcing
high-low level feature consistency constraints between mixed samples and unla-
beled samples, the method more effectively captures global and local features,
thereby improving segmentation performance. In future work, we plan to design
more adaptive masking strategies and further explore other feature consistency
approaches to address more complex scenarios.

5 Disclosure of Interests
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