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Abstract. Cardiac magnetic resonance (CMR) imaging is one of the
most important imaging modalities for cardiac analysis. However, short-
axis CMR imaging can only produce a sparse set of 2D images with an
extremely low inter-slice resolution. Moreover, these 2D slices are usu-
ally misaligned due to the respiratory and cardiac motion of the patients,
strongly affecting the diagnosis and intervention procedures for cardiac
diseases. Deep learning-based approaches have been proposed to tackle
these problems, but they mostly focus on voxel representation, yielding
rough cardiac surfaces that are difficult to analyze. Therefore, we propose
a deep learning-based method to perform CMR motion correction and
super-resolution simultaneously to acquire high-fidelity left ventricular
myocardial surfaces. Given a set of 2D misaligned sparse segmentation
masks of the left ventricular myocardium, our method first leverages an
end-to-end convolutional neural network to correct and super-resolve the
masks to approach the distribution of the motion-free and high-resolution
masks. Then, the acquired super-resolved segmentation masks are esti-
mated to form coarse signed distance grids, guiding a latent diffusion
model to produce the corresponding high-fidelity myocardial surfaces.
The superior performances of our approach are testified through com-
prehensive experiments in both simulation and clinical settings.

Keywords: Cardiac magnetic resonance - Motion correction - Super-
resolution.

1 Introduction

Cardiac magnetic resonance (CMR) imaging is one of the gold standards for
cardiac assessments. Clinically, short-axis CMR imaging is widely applied to ac-
quire a sparse set of 2D cardiac image slices from multiple breath holds, bringing
two unavoidable defects. One of the defects is the data sparsity, which means
the inter-slice resolution of short-axis CMR slices is extremely low (only 8-10
mm). Another defect is the motion artifacts induced by the respiratory and car-
diac motion of the patients during the breath holds, causing the already sparse
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2D slices to be spatially misaligned. These defects strongly hinder the effective
utilization of short-axis CMR imaging and hence need to be addressed.

In recent years, deep learning has been applied to CMR motion correction
and super-resolution to achieve better results. Voxel-based methods [19,4,5] focus
on segmentation masks from a generative [19] or discriminative [4,5] perspective.
The generative method SRHeart [19] performs latent optimization based on a
variational autoencoder (VAE) [7] to search in its latent space for proper latent
vectors to generate the targeted high-resolution 3D cardiac masks. The discrim-
inative approaches aim to build multi-stage [4] or end-to-end [5] pipelines for
motion correction and super-resolution using the convolutional neural network
(CNN). In addition, there is an approach [2] formulating CMR motion correc-
tion and super-resolution as a point cloud completion task, where the contours
obtained from the segmentation masks are used to produce dense cardiac point
clouds via the point completion network (PCN) [20]. However, their method has
to rely on post-processing to generate meshes from the point clouds, leading to
additional parameter tuning and constantly low-quality meshes.

The previous methods are all based on explicit shape representations, namely
voxels, meshes, and point clouds. The voxel-based approaches can only produce
rough surfaces that are difficult for analysis, and the method built upon point
clouds has to be accompanied by additional mesh generation algorithms to form
surfaces. Therefore, we set our sights on the implicit representation of the signed
distance field (SDF) [11] to enable smooth surface reconstruction.

In this paper, we propose a deep learning-based method to perform motion
correction and super-resolution jointly for CMR imaging to reconstruct high-
fidelity left ventricular myocardial surfaces. In contrast to previous approaches,
including DeepSDF [11], that utilize multi-layer perceptrons to model continu-
ous SDFs, we represent cardiac surfaces in the format of signed distance grids
(SDGs), which are SDFs discretely stored in voxel grids and enable the uniform
and efficient utilization of CNNs for network architectures. These surface SDGs
are compressed to a compact latent space by a vector-quantized variational au-
toencoder (VQ-VAE) [18] for a latent diffusion model [14]. The diffusion model
is guided by coarse signed distance grids (C-SDGs) estimated from segmentation
masks to learn the latent representations of the surface SDGs. To reconstruct
surfaces from clinically acquired misaligned low-resolution segmentation masks,
a CNN is trained to correct and super-resolve the masks, which are then utilized
to estimate the C-SDGs. C-SDGs will guide the latent diffusion model to generate
fine-grained SDGs, which will be converted into high-fidelity myocardial surfaces
via Matching Cubes. The utilization of surface SDGs and C-SDGs as conditions
is closely synergistic with the employed VQ-VAE encoder, maintaining promis-
ing reconstruction results even in challenging clinical settings. Comprehensive
experiments have demonstrated that our method achieves better reconstruction
quality both qualitatively and quantitatively.
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Fig. 1. An overview of our method. High-fidelity cardiac surfaces acquired by template
mesh registration are converted to signed distance grids (SDGs) and compressed by
the VQ-VAE to learn a compact latent representation. Coarse SDGs (C-SDGs) are
estimated to serve as the conditions for the diffusion model to learn the surface la-
tent. For surface reconstruction, the misaligned low-resolution masks are corrected and
super-resolved by a CNN to produce the super-resolved masks, based on which the
C-SDGs are estimated to guide the denoising process of the diffusion model, producing
the denoised latent to reconstruct the surfaces.

2 Methods

Our method comprises two parts. The first part involves the training of a VQ-
VAE and a latent diffusion model to learn the latent representations of high-
fidelity cardiac surfaces, as shown in the left component of Fig. 1. The second
part is illustrated in the right block of Fig. 1, depicting the cardiac surface recon-
struction procedure. A CNN is trained to correct and super-resolve the clinically
acquired misaligned low-resolution segmentation masks. Coarse signed distance
grids are estimated from the masks to guide the trained diffusion model for
conditional denoising, yielding surface latent to reconstruct the cardiac surfaces.

2.1 Cardiac Latent Diffusion

To reconstruct high-fidelity cardiac surfaces, we leverage a latent diffusion model
to capture priors of high-quality surfaces based on the implicit representation of
signed distance fields.

Cardiac Surface Compression. To ensure that the latent diffusion can learn
a compact latent representation of high-fidelity cardiac surfaces, we first apply
Marching Cubes [9] to the high-resolution segmentation masks to obtain the
meshes. Next, a template cardiac mesh [1] is registered to these meshes, serving
as the ground-truth surfaces. Then, the signed distances from the voxel points
of the segmentation masks to the fitted cardiac meshes are computed to acquire
the signed distance grids (SDGs), which are the discretely stored SDFs. We



4 7. Zhang et al.

train a 3D CNN-based VQ-VAE [18] to compress and reconstruct these grids,
yielding a compact latent space of high-quality cardiac surfaces. The SDG and
its reconstruction counterpart are denoted as S and S. The surface latent and the
vector-quantized latent are denoted as Z* and Z*. The loss function for VQ-VAE
training is formulated as:

2
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(1)

2
where sg[] is the stop-gradient operation.

Latent Diffusion Training. After the VQ-VAE is trained, we freeze its weights
and use its produced surface latent to train the latent diffusion model. For the
conditioning purpose, we propose to utilize the coarse signed distance grids (C-
SDGs) estimated from the segmentation masks. Given a segmentation mask M,
we first apply Marching Cubes [9] to obtain its corresponding mesh. Then, a
C-SDG C is defined as a voxel grid with the same shape as M. For each voxel
position i of C, the contained value is estimated via the following scheme:
] = —1xD@E) itM[i]=1 2)
Tl +1xD@E)  ifM[i] =0
where M[-] denotes querying the segmentation label at the voxel ¢ of M. The
background voxels and myocardial voxels are labeled as 0 and 1, respectively.
D(7) is the distance from the voxel ¢ to the surface of the corresponding mesh.
These estimated SDGs are described as C-SDGs because they contain inaccura-
cies in both signs and distance values. A conditional encoder will encode these
C-SDGs into conditional latent Z¢ for the diffusion model. Although C-SDGs
are inherently inaccurate, they share similar semantics to the SDGs of the high-
fidelity cardiac surfaces because every value within them represents the signed
distances from voxel positions to the surfaces. Consequently, we directly employ
the encoder of the VQ-VAE as the conditional encoder as it has been trained to
encode the surface SDGs.
Given the vector-quantized and compressed latent representations of the
high-fidelity cardiac surfaces Z* and the corresponding conditional latent Z¢,
the latent diffusion model € is trained with the following loss function:

- 2
Larrs =Bz g | e en@r 70 )
where Zf is the noised latent representation. € is a Gaussian noise variable and
t is uniformly sampled from {1,...,T}.

2.2 Cardiac Surface Reconstruction

The clinically acquired segmentation masks from CMR imaging are misaligned
and have low resolutions. Therefore, a CNN is applied to correct and super-
resolve these low-resolution masks. Then, we estimate the C-SDGs and recon-
struct the surfaces based on a conditional denoising procedure.
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Motion Correction and Super-Resolution Network. Following [5], we
build and train a CNN-based network MCSR-Net with a motion correction net-
work (MC-Net) and a super-resolution network (SR-Net) sequentially connected.
It first produces translation vectors to realign the misaligned segmentation masks
and then super-resolves them to increase the mask resolution. MC-Net follows
the structure in the method [5] except that the ResBlock channels are reduced
to 16, 32, 64, and 64. In contrast to the method [5] that processes full-resolution
voxel grids in the super-resolution part, a modification is made by applying intra-
slice downsampling and upsampling to increase the receptive fields and speed up
computations. Besides, the channels are also decreased to constrain over-fitting.
The loss function employed to train the MCSR-Net follows the method [5].

Surface Reconstruction by Conditional Denoising. Once the latent dif-
fusion model and MCSR-Net are trained, cardiac surfaces can be reconstructed
via a conditional denoising procedure. Given a misaligned low-resolution seg-
mentation mask, we first feed it into the MCSR-Net to obtain the motion-free
and super-resolved mask, based on which the C-SDG is estimated for the condi-
tional encoder to produce the conditional latent. The conditional latent guides
the diffusion model to iteratively denoise a Gaussian noise variable to obtain
the desired surface latent, which is forwarded to the decoder of the VQ-VAE to
generate the SDG. The cardiac surface can be extracted via Marching Cubes [9]
at the zero iso-surface of the generated SDG.

3 Experiments and Results

3.1 Experimental Settings

Datasets. We utilize the cardiac super-resolution label maps dataset [15] for the
experiments. It contains motion-free high-resolution segmentation masks from
3D balanced steady-state free precession cine sequences and motion-corrupted
low-resolution masks obtained from multiple breath holds of 1331 patients. We
divide them into 1024 for training, 72 for validation, and 235 for testing. The
high-resolution masks are resampled to a voxel spacing of 1 mm x 1 mm X 2 mm
and then centered and cropped to 128 x 128 x 60. Two experimental settings,
namely simulation and clinical settings, are employed to conduct a comprehen-
sive study. (1) For the simulation setting, the misaligned low-resolution masks
are simulated by first 5x down-sampling the high-resolution masks in the slice di-
mension and then performing slice-wise translations using two-dimensional ran-
domly generated vectors. Each entry of the vectors is generated independently
using a Gaussian distribution with a mean of 3.45 mm and a standard deviation
of 1.305 mm. This is the distribution fitted in a previous study [17] but multi-
plied by a factor of 1.5 to include higher diversity. For each high-resolution mask,
12 misaligned low-resolution masks are simulated. (2) For the clinical setting,
we directly utilize the provided realistic low-resolution masks in the dataset.
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Implementation Details. The mesh registration and signed distance compu-
tation are implemented using PyTorch3D [13] and Open3D [21]. For mesh reg-
istration, an MLP is employed to deform the template to fit the target meshes
with the mesh vertex coordinates as inputs and the deformation vectors as out-
puts. The loss function consists of Chamfer distance, Laplacian smoothing, and
L2 norm of the vectors. The VQ-VAE, with the codebook size 1024 and latent
dimension 8§, is trained for 800 epochs with an initial learning rate of 0.0001 and
a reduction-on-plateau scheduler using a decay factor of 0.9 based on validation
loss. The diffusion U-Net from MONAI Generative [3,12] is used as the denoiser
with 128, 256, and 384 channels at each depth. It is trained for 3000 epochs using
1000-step DDPM [6] and le-5 as the base learning rate with the same scheduler
as the VQ-VAE. The conditional encoder is frozen while training diffusion. For
reconstruction, DDIM [16] with 10 sampling steps is used for denoising. DDPM
and DDIM employ a linear schedule between 0.0015 and 0.0195. All the opti-
mization processes are performed using Adam optimizer [8] on an NVIDIA 4090
GPU.

Competing Methods and Evaluation Metrics. Five methods are included
as the competing methods, namely nearest-neighbor interpolation (NNT), SR-
Heart [19], MCSR-MS [4], MCSR-ETE [5], and CardiacPCN [2]. We utilize the
Dice coefficient as the primary evaluation metric. Since CardiacPCN is a point
cloud-based method producing non-watertight meshes constantly, Chamfer dis-
tance (CD) is leveraged as an additional metric.

3.2 Experimental Results

Quantitative Results. The methods are first trained and tested using the
simulated low-resolution masks and the respective high-resolution masks. The
experimental results are listed in Table 1. In this simulation setting, our method
achieves the best shape accuracy among these approaches. For the clinical set-
ting, two experiments are conducted using the clinical paired low-resolution and
high-resolution masks provided in the dataset. We first directly test the meth-
ods trained on the simulated masks using the clinical masks. Next, we finetune
these methods with the training set of clinical masks and then test them on
the test set. For our method, only the MCSR-Net is finetuned. The quantita-
tive results are listed in Table 2. In both experiments, our method reaches the
best reconstruction accuracies. These methods usually experience a performance
drop when moving from simulation to clinical settings, showing that there is still
room to improve the generation and utilization of simulated data.

Qualitative Results. The visualized reconstructed surfaces are shown in Fig. 2.
The surfaces produced by NNI, SRHeart [19] MCSR-MS [4], and MCSR-ETE [5]
are rough as they are voxel-based methods, forming surfaces by Marching Cubes
with an iso-value of 0.5. The surfaces from NNI preserves significant motion
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Table 1. The performances of the methods in the simulation setting.

Methods Dice (%) CD (mm)
NNI 64.77 £ 3.91 | 21.94 £ 2.90
SRHeart [19] | 76.89 + 4.05 | 18.41 + 4.61
MCSR-MS [4] | 91.24 + 3.09 | 6.74 + 1.51
MCSR-ETE [5]| 92.97 + 2.95 | 6.30 + 1.41
CardiacPCN [2] ] 13.16 + 83.08
Ours 94.05 £+ 2.05|5.59 + 1.13

Table 2. The performances of the methods in the clinical settings.

Direct Finetuning
Methods Dice (%) CD (mm) Dice (%) CD (mm)

NNI 65.84 £ 6.57 | 22.08 £ 5.34 | 65.84 £ 6.57 |22.08 £+ 5.34
SRHeart [19] | 74.43 £+ 6.61 | 19.85 4+ 7.43 | 74.43 + 6.61 {19.85 £ 7.43
MCSR-MS [4] | 73.69 £ 5.08 | 16.54 £ 3.94 | 84.19 £+ 4.96 [11.34 + 5.21
MCSR-ETE [5]| 74.23 £+ 4.90 | 16.32 £+ 4.11 | 84.21 4+ 5.12 |11.19 + 5.66
CardiacPCN [2] - 17.19 £ 9.51 - 12.74 £+ 6.59
Ours 76.88 + 4.54/14.97 + 3.74/86.32 + 5.11|9.98 £ 5.41

artifacts, whereas the ones produced by SRHeart [19], MCSR-MS [4], and MCSR-
ETE [5] are more motion-reduced. CardiacPCN |[2] relies on post-processing and
only generates low-quality meshes. In contrast, our method reconstructs surfaces
that are more accurate and smooth.

3.3 Ablation Studies

The ablation studies are conducted in the clinical direct testing setting for our
method, and the quantitative results are shown in Table 3. The shape accu-
racy of the super-resolved masks produced from MCSR-Net without further
surface reconstruction using the latent diffusion is set as the baseline, which is
lower than our proposed method. The next two configurations investigate dif-
ferent conditions, replacing C-SDGs with the super-resolved masks and the raw
misaligned low-resolution masks, respectively. In these cases, the conditional
encoders demand training from scratch with the diffusion models. Using low-
resolution masks as conditions leads to significantly worse performances since it
is more difficult to bridge them to the corresponding smooth surfaces, and uti-
lizing super-resolved masks reaches a slightly decreased performance compared
to employing C-SDGs. Besides, these configurations require the training of an
additional conditional encoder, increasing computational cost and time.

We also explore the utilization of VAE [7] as the compression model, which
leads to significantly inferior results. Given C-SDGs as conditions, the VQ-VAE
encodes them into surface latent and replaces them with their vector-quantized
latent from the codebook, which is trained using SDGs of high-fidelity surfaces.
Therefore, even if C-SDGs are coarse and inaccurate, the vector-quantized latent
suffers less from it. In contrast, VAE has weaker control over the latent space,
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Fig. 2. The visualized reconstructed surfaces by the competing methods and ours.

yielding problematic latent representations when encountering poor-quality C-
SDGs. In addition, we leverage a conditional GAN [10] to replace the latent
diffusion to verify the functionality of the diffusion model. The result shows
worse performances than our proposed method, demonstrating the effectiveness
of the latent diffusion.

Table 3. The quantitative results of the ablation studies.

Configurations Dice (%) CD (mm)
MCSR-Net 73.04 £ 5.22 | 16.77 £ 3.92
Mask Conditioning 75.77 £ 4.68 | 15.54 £ 3.90
Low-Resolution Mask Conditioning|55.77 + 11.37|44.08 + 29.63
VAE [7] 55.63 + 8.44 |99.86 + 313.54
Conditional GAN [10] 73.48 £5.72 | 17.03 £ 4.68
Proposed 76.88 + 4.54|14.97 + 3.74

4 Conclusion

In this paper, we propose a method for CMR motion correction and super-
resolution to reconstruct high-fidelity cardiac surfaces based on latent diffusion
models. Comprehensive experiments under both simulation and clinical settings
have demonstrated that our method achieves the best surface reconstruction
results both quantitatively and qualitatively. One potential aspect to improve
is the design of MCSR~Net as the causes for motion artifacts are broader than
slice-wise translations, which can serve as a direction for future work.
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