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Abstract. Automated Universal Lesion Detection (ULD) based on com-
puted tomography (CT) images provides physicians with rapid and ob-
jective information regarding lesion locations and shapes. However, it
is difficult to detect universal lesions in various regions because of the
disparity in lesion sizes and the grayscale variation present in CT im-
ages. In this paper, we propose DetectDiffuse, a multi-scale diffusion
model driven by feature aggregation and 3D attention. First, we utilize
the diffusion model to generate noisy detection boxes, incorporating a
scale factor to simulate lesions at different scales and mitigate detection
errors. Second, we develop a Neighborhood Aggregation (NA) module
to enhance the model’s capability to distinguish between lesioned and
normal tissues. This module aggregates features within and around de-
tection boxes, reducing false detections caused by significant grayscale
differences in lesions. Third, we propose a 3D Stripe Attention (SA)
module leveraging dimensional disambiguation. This module uses an at-
tention mechanism to extract information across different dimensions of
CT images more effectively. We performed comparison experiments on
five datasets, the results show that the proposed method outperforms the
12 compared state-of-the-art methods, and improves the performance by
5.82% compared with the best method.

Keywords: Universal Lesion Detection - 3D Stripe Aggregation - Neigh-
bor boxes Aggregation.

1 Introduction

Computed tomography images can quickly scan the human body and are widely
used in the diagnosis of diseases such as tumors, trauma and infection [19]. In
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clinical practice, physicians primarily rely on manually examining CT images
layer by layer, search for abnormal regions that differ from their prior knowledge
bank of “healthiness” when mentally segmenting the lesions. It is a more common
scenario where physicians do not segment the contours of lesions explicitly but
assess the condition of the lesions implicitly [17]. However, it is a time consuming
process, prone to inter- and intra-human error. Therefore, automatically detect-
ing lesions via computer assistance is crucial for supporting physicians in disease
diagnosis. Researchers have developed a lot of studies [20,27, 5, 7] on automated
identification of lesions in specific organs and achieved good results. However,
several challenges must be addressed to achieve universal lesion detection. First,
lesions in different organs have different shapes and sizes, it is difficult to design
detection boxes for lesions with variable shapes. Second, lesions in different parts
of the CT image have different grayscales and may overlap with the grayscale
distributions of normal tissues in other parts. The two challenges mentioned
above together lead to a susceptibility to false detections in ULD tasks.

To achieve universal lesion detection in CT images, most of the early stud-
ies [10, 22, 18] focused on localizing lesions by modifying the backbone networks
of anchor-based detection frameworks such as Faster R-CNN [12], which utilize
hand-designed anchor boxes for lesion detection. However, the size of lesions
in images of different parts of the body and different stages of the disease has
large differences. Manually designed anchor boxes are typically effective only for
detecting moderately sized lesions and may fail to detect smaller lesions in the
early stages or larger lesions in the later stages. To avoid the above problems,
anchor-free-based [28, 8] detection frameworks have been proposed [11, 15]. These
frameworks localize lesions by predicting their center points and achieve better
detection across lesions of varying sizes. These methods primarily rely on con-
volutional networks to extract features along the vertical axis of the CT image,
which limits their ability to model relationships between different layers. Some
approaches [21, 9] have attempted to address this by incorporating Transformer
or self-attention mechanisms [3, 29|, which improve detection by modeling long-
range feature dependencies while preserving the convolutional networks’ ability
to capture local features. However, due to the computational demands of Trans-
formers, these methods often suffer from slow training and inference speeds.

In this paper, we propose a multi-scale diffusion model driven by feature
aggregation and striped attention for universal lesion detection in CT images.
First, we employ the multi-scale forward diffusion process to generate noise de-
tection boxes following a uniform Gaussian distribution for an image sequence
composed of both the target and reference images. To simulate lesions of vari-
ous sizes, we apply a random scale factor, further increasing the scale variance
among the noise detection boxes. After feature extraction, a neighbor aggrega-
tion module is introduced to help the network differentiate between the features
inside the detection boxes and the surrounding tissue features. Subsequently, the
3D stripe attention module disassembles the features into three independent di-
mensions, performing attention computation along these directions to aggregate
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3D information from multiple perspectives. Finally, the lesion detection decoder
utilizes reverse diffusion to obtain accurate lesion detection results.

Our contribution can be summarized as follows: firstly, we propose a multi-
scale diffusion model as the framework for the proposed method. Among it, the
neighbor-hood feature aggregation module is proposed. The problem of large
differences in the scale and gray scale distribution of lesions in different parts
of the body is effectively addressed by aggregating the tissue features around
the detection boxes. Secondly, we introduce a 3D stripe attention module. This
module can model 3D data along three different directions for long distance fea-
ture modeling, efficiently utilizing the spatial information inherent in 3D data,
thereby enhancing the network’s performance in lesion detection. Thirdly, exper-
imental results on five different datasets demonstrate that our proposed method
significantly improves detection performance compared to other ULD methods,
achieving a detection sensitivity of 84.71% and an mAP of 63.89%, which are
3.08% higher than the current leading method.

2 Method

2.1 Overview

We propose the multi-scale diffusion model driven by feature aggregation and
striped attention as shown in Fig. 1. First, a multi-scale diffusion model [4] is
used, which covers lesions of various scales by setting scale factors v and arbi-
trarily distributing the size of the boxes. Afterward, in the multi-scale forward
diffusion process, two modules are proposed: neighborhood box aggregation (NA)
module and 3D stripe attention (SA) module. In NA module, the region of inter-
est (Rol) features of the noise boxes are used to compare with the features that
surround it. By suppressing Rol features that are similar to the surrounding fea-
tures and enhancing those that differ more significantly, the framework is better
equipped to distinguish between lesions and normal tissues. Subsequently, the
Rol features are passed to the SA module, which disassembles the features along
three directions and computes attention. By stacking features from reference
layers in different directions into the detection layer, weak lesions are enhanced,
and non-lesion feature representations are suppressed. Finally, these features are
fed into the lesion detection decoder to obtain the final detection results.

2.2 Neighbor Boxes Aggregation Module

To assist the network in distinguishing between lesions and the surrounding nor-
mal tissues and organs, it is crucial to compare the features within the detection
box to those of the surrounding normal tissues. This comparison also enhances
both the detection rate of the proposed method across various lesions and its
generalization performance across different modalities. To this end, we propose a
neighborhood boxes aggregation module, which reduces false-positive detections
caused by tissues with similar imaging features to lesions by projecting the sur-
rounding neighborhood features into the detection box in an attention-weighted
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Fig. 1. Overview of the proposed framework.

manner. By comparing the features within the detection box to those of the sur-
rounding tissues, the module effectively mitigates false positives due to tissues
that closely resemble lesion imaging characteristics.

For any noise box, take 8 rectangular boxes around it with exactly the same
shape as its neighboring boxes, and the coordinates of the kth detection box are:

Bé{iz = [‘rl - mkwvyl - nkdv T2 — mkw792 - nkd} (1)

where w = x9 — x1, d = y2 — y1 are the length and width of the current noise
detection box, respectively. m*, n* € —1,0, 1 indicates the positional relationship
between the neighborhood box and the noise detection box.

Form a sequence of features {X,, thﬂ-, e ,Xﬁi, . ,Xgi} € R¥*4, which
corresponding to the noise box and the neighboring boxes. Then vectorize them
to obtain the corresponding Rol feature vector set {V; ;, thz, cees Vtkl, N A RS
R@*dXC wwhere C' is the number of feature channels. Finally, a linear projection
is performed to characterize the token sequence of neighborhood Rol features:

A :]:proj([‘/t,i;‘/t}m-~-a‘/tl7€ia-"7‘/t§i])
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in which E € R(wxh*xC)xD g the learnable projection transform and D is the
output channel, this operation is realized by 1 x 1 convolution in this paper.
Then the group of vectors is fed into the multi-head self-Attention (MSA) Block
to compute the attention, which consists of the MHA mechanism with Layer
Normalization (LN) and uses residual concatenation to obtain the augmented
features, as represented by Z’ = LN(MSA(Z) + Z). The feature vector corre-
sponding to the noise box is used as query, and the rest of the feature vectors
are used as the key and value inputs of the MSA, respectively. After resid-
ual linking with the original feature vectors, the enhanced feature vectors are
remodeled into the enhanced feature map X’ containing the neighboring infor-
mation by layer normalization. The enhanced features are then weighted based
on their difference from the original features via a dynamic convolution block.
This block consists of Dynamic Convolution (DC), Layer Normalization, and
Fully Connected (FC) layers. Residual connections are employed to obtain the
final enhanced features, as represented by X' = LN(FC(DC(X, X’)) + X).
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At this stage, the noise box is an enhanced feature that has incorporated the
aggregation of neighboring features. If the features in the noise box are signifi-
cantly different from the neighbors, X’ will basically maintain the original state.
Conversely, if the feature in the noise box are similar to those of the neighbors,
X’ will be weakened through weighting, thereby preventing false-positive detec-
tions. Consequently, this module relies solely on the features extracted by the
feature extractor, ensuring robust generalization performance. As long as the
feature extractor identifies a region with significant differences, it can signal to
the lesion detection decoder that this region is highly likely to contain a lesion.

2.3 3D Stripe Attention Module

Fully extracting three-dimensional information from CT images enhances the
network’s ability to understand the morphological features of lesions. To achieve
this, we propose a 3D stripe attention module that employs 1D convolution
to model features in long sequences from three directions, enabling efficient and
lightweight attention weighting. The realization of this module is shown in Fig. 2.
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Fig. 2. (a) The flowchart of 3D feature enhancement, (b) the structure of SA module.

For the input image I4.; and the reference layer Iy, it is first reduced to a
3D image by feature stitching:

ISD = concate (Iref,la veny Ireﬁ%yldeta Iref,%—i—l’ ~--7Iref,h) (3)

where h denotes the total number of layers of the reference layer, and to ensure
that the layer to be detected is in the center of the 3D image, h is taken as an even
number. And then the 3D Rol feature X5p € R¥*@xhxC ig taken out from the
corresponding feature map of the 3D image according to the 3D Rol composed
of noise detection boxes in each layer. To extract the spatial features, stripe
pooling in three directions is applied to X3p to disentangle the dimensions and
thus aggregate the spatial information from different directions. At this stage, the
features in the 3D image are pooled by strips, disassembling the dimension into
a sequence of features in three directions to capture the information contained in
the long feature sequence. We employ 1D convolution with a kernel size of 3 to
extract information in these three directions, thereby enhancing the network’s
ability to embed the information necessary for 3D target localization. Given that
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3D images typically use a small batch size, we implement Group Normalization
(GN) to mitigate the reduction in generalization ability caused by changes in
data distribution during training. Additionally, we use the Sigmoid function as
the activation function to introduce nonlinearity, thereby enhancing the module’s
learning and expressive capabilities. Finally, the attention weights computed
for the different directions are weighted into the original image. To assist the
lesion detection decoder in predicting the lesion location, the 3D feature Ysp is
disassembled along h and reduced to a 2D feature Yg;:

(Ve oo Yoep s Yaer Vyep sanseo s Yoepn) = split(Vap,h) - (4)

3 EXPERIMENTS

3.1 Experimental Setup

Datasset. In this paper, the DeepLesion dataset [24] is used as a validation of
the performance of the proposed DetectDiffuse framework on ULD task. The
lesions include lung nodules, enlarged lymph nodes, liver tumors, and so on. In
this paper, we use the official dataset division method, 70%, 15%, and 15% of
the dataset are used for training, validation, and testing, respectively.
Implementation detail. The DetectDiffuse framework was run on Ubuntu
22.02 and trained using a NVIDIA GeForce RTX 3090 GPU. During training,
the backbone network ResNet50 is initialized with pretrained weights based on
ImageNet-1K dataset, and the rest is initialized with weights using the Xavier
initialization method [6]. To optimize the network weights, an AdamW optimizer
with an initial learning rate of 2.5 x 10~° and weight decay of 1074,
Evaluation criteria. In order to validate the performance of DetectDiffues on
ULD task, the results are evaluated using the sensitivity at False Positive Per
Image (FPPI) of 0.5 and 1 as well as the mean Average Precision at 50% IoU
threshold (mAP@50).

Table 1. Comparison of Universal Lesion Detection (ULD) methods

Methods 3DCE A3D MULAN DSA DKMA SATr DiffULD Ours

FPPIQ0.5 62.48 74.10 76.10 77.38 78.10 81.02 77.84 81.27
FPPIQ1 73.37  81.81 82.50 84.06 85.26 86.64 84.57 86.84
mAP@50  41.23  46.31 46.69 53.11  52.83 52.98 52.66 54.94

3.2 Comparison with ULD Methods

To demonstrate the effectiveness of DetectDiffuse in extracting 3D information

and capturing lesion features, we compare DetectDiffuse with seven representa-
tive ULD methods, namely, 3DCE [22], A3D [25], MULAN [23], DSA-ULD [15],
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DKMA-ULD [14], SATr [9] and DiffULD [26]. The quantitative results of the
seven methods and DetectDiffuse are shown in Table 1. The experiment results
have showed that DetectDiffuse maintains the best performance on all measures.
The qualitative results of the comparison experiment are shown in Fig. 3.
In the figure, green boxes indicate correct detection, yellow boxes indicate false
positive detection, and red dotted boxes indicate false negative detection.

Fig. 3. Qualitative results of ULD Methods. In the figure, (a)-(h) represent 3DCE,
A3D, MULAN, DSA-ULD, DKMAULD, SATr, DifftULD and Detectdiffuse respectively.

As a ULD method, we believe that it should have the ability to detect
never-before-seen lesions even when faced with them. To this end, we performed
zero-shot experiments on four additional datasets: BraT'S2021 [1], COVID-19-
20 [13], LiTS [2], and Task08 [16]. For the above datasets, we extracted the
lesion-containing anatomical slices through registered segmentation masks, pre-
cise delineation of pathological regions via bounding box coordinates derived
from binary lesion maps and converting it to MS COCO format.

Fig. 4 shows the qualitative results of DetectDiffuse on four zero-shot datasets
and the box plots of the sensitivities of egiht ULD methods. It can be found that
DetectDiffuse is able to detect most of the lesions with minimal False detection.

3.3 Ablation Experiment

We design ablation experiments to verify the importance of the NA module and
the SA module. After removing the above two modules, the baseline method can



il

T T T T
(e) aoce A3D  MULAN DSA-ULD DKMAULD SATr  DiffULD  Ours

Fig. 4. Zero-shot validation results on different datasets. (a)-(d) denote the qualita-
tive results of DetectDiffuse on COVID-19-20, LiTS, BraTS2021 and Task08 dataset
respectively. (e) Boxplots of different methods in zero-shot datasets.

be obtained. The method of ablating the NA module is denoted by W /o NA; and
the method of ablating the SA module is denoted by W /o SA. To further validate
the ability of the SA module to acquire 3D information, we replaced the module
with other lesion detection methods utilizing 3D information, respectively called
W/ Conv (using 3D Convolution), W/ Dense (using dense net), and W/ Attn
(using multi-head self-attention). The quantitative results of lesion detection in
DeepLesion dataset for different ablation methods and DetectDiffuse are shown
in Table 2. As can be seen from the table, the proposed method has the best
performance, proves the validity of the proposed NA and SA module.

Table 2. Ablation experiment

Methods Baseline W/oSA W/oNA W/ Conv W/ Dense W/ Attn Ours

FPPI@0.5 74.67 79.35 77.41 75.63 76.98 76.92 81.27
FPPI@1 79.91 85.26 84.53 83.19 83.85 84.17 86.84
mAP@50  51.17 52.60 52.97 51.47 51.68 52.31 54.94

4 Conclusion

In this paper, we find that existing universal lesion detection methods only con-
sider the 3D information in the vertical direction of the CT image, which leads
to underutilization of spatial information to produce FN detection. To address
this problem, we propose a 3D stripe attention module to fully utilize the spatial
information in a dimensional disassembly-weight imposition manner. To address
FP detection due to lesion imaging approximating normal tissues, a neighbor box
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aggregation module is developed in this paper. The feature aggregation assists
the network to understand the difference between the features in the detection
box and the surrounding background features to further improve the perfor-
mance of lesion detection. Experiments on the DeepLesion dataset demonstrate
that our method achieves the best generalized lesion detection performance.
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